On functions, whose lines of steepest descent bend proportionally to level lines

Giorgio Talenti

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)

  • Volume: 10, Issue: 4, page 587-605
  • ISSN: 0391-173X

How to cite

top

Talenti, Giorgio. "On functions, whose lines of steepest descent bend proportionally to level lines." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.4 (1983): 587-605. <http://eudml.org/doc/83919>.

@article{Talenti1983,
author = {Talenti, Giorgio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {level line; curvature; critical point; singularity; geometry of solutions},
language = {eng},
number = {4},
pages = {587-605},
publisher = {Scuola normale superiore},
title = {On functions, whose lines of steepest descent bend proportionally to level lines},
url = {http://eudml.org/doc/83919},
volume = {10},
year = {1983},
}

TY - JOUR
AU - Talenti, Giorgio
TI - On functions, whose lines of steepest descent bend proportionally to level lines
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 4
SP - 587
EP - 605
LA - eng
KW - level line; curvature; critical point; singularity; geometry of solutions
UR - http://eudml.org/doc/83919
ER -

References

top
  1. [1] R. Courant - D. Hilbert, Methods of mathematical physics, Interscience, 1962. Zbl0099.29504
  2. [2] H. Federer, Geometric measure theory, Springer-Verlag, 1969. Zbl0176.00801MR257325
  3. [3] M. Longinetti, Sulla convessità delle linee di livello di funzioni armoniche, Boll. Un. Mat. It., ser. 6, vol. 2-A (1983), pp. 71-75. Zbl0525.35013
  4. [4] F. John, Partial differential equations, Springer-Verlag, 1971. Zbl0209.40001MR304828
  5. [5] F. John, Formation of singularities in one-dimensional wave propagation, Comm. Pure Appl. Math., 27 (1974), pp. 377-405. Zbl0302.35064MR369934
  6. [6] S. Klainerman - A. Majda, Formation of singularities for wave equation including the nonlinear vibrating string, Comm. Pure Appl. Math., 33 (1980), pp. 241-263. Zbl0443.35040MR562736
  7. [7] P.D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964), pp. 611-613. Zbl0135.15101MR165243
  8. [8] S.A. Levin, Nonlinear boundary problems for a quasilinear parabolic equation, J. Diff. Eq., 5 (1969), pp. 32-37. Zbl0169.13003MR233085
  9. [9] G. Talenti, A note on the Gauss curvature of harmonic and minimal surfaces, Pacific J. Math., 101 (1982), pp. 477-492. Zbl0496.53004MR675412

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.