The index of isolated critical points and solutions of elliptic equations in the plane

G. Alessandrini; R. Magnanini

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)

  • Volume: 19, Issue: 4, page 567-589
  • ISSN: 0391-173X

How to cite

top

Alessandrini, G., and Magnanini, R.. "The index of isolated critical points and solutions of elliptic equations in the plane." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.4 (1992): 567-589. <http://eudml.org/doc/84137>.

@article{Alessandrini1992,
author = {Alessandrini, G., Magnanini, R.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {index calculus; Gauss-Bonnet theorem; number and character of critical points; gradient length and the curvatures of the level curves},
language = {eng},
number = {4},
pages = {567-589},
publisher = {Scuola normale superiore},
title = {The index of isolated critical points and solutions of elliptic equations in the plane},
url = {http://eudml.org/doc/84137},
volume = {19},
year = {1992},
}

TY - JOUR
AU - Alessandrini, G.
AU - Magnanini, R.
TI - The index of isolated critical points and solutions of elliptic equations in the plane
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 4
SP - 567
EP - 589
LA - eng
KW - index calculus; Gauss-Bonnet theorem; number and character of critical points; gradient length and the curvatures of the level curves
UR - http://eudml.org/doc/84137
ER -

References

top
  1. [A1] G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 229-256. Zbl0649.35026MR939628
  2. [A2] G. Alessandrini, Isoperimetric inequalities for the length of level lines of solutions of quasilinear capacity problems in the plane, Z. Angew. Math. Phys.40 (1989), 920-924. Zbl0712.35034MR1027585
  3. [B] L. Bers, Function-theoretical properties of solutions of partial differential equations of elliptic type, Ann. of Math. Stud.33 (1954), 69-94. Zbl0057.08602MR70009
  4. [D] P.L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970. Zbl0215.20203MR268655
  5. [F] F. Federer, Geometric Measure Theory, Springer Verlag, New York, 1969. Zbl0176.00801MR257325
  6. [K-S] D. Kinderlehrer - G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. Zbl0457.35001MR567696
  7. [Mi] J. Milnor, Differential Topology, Princeton University Press, Princeton, 1958. 
  8. [Mo] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer Verlag, New York, 1966. Zbl0142.38701MR202511
  9. [Ms] M. Morse, Relations between the critical points of a real function of n independent variables, Trans. Amer. Math. Soc.27, 3 (1925), 345-396. Zbl51.0451.01MR1501318JFM51.0451.01
  10. [P] C. Pucci, An angle's maximum principle for the gradient of solutions of elliptic equations, Boll. Un. Mat. Ital.A (7), 1 (1987), 135-139. Zbl0628.35034MR880110
  11. [PM] K.F. Pagani-Masciadri, Remarks on the critical points of solutions to some quasilinear elliptic equations of second order in the plane, to appear J. Math. Anal. Appl. Zbl0808.35029MR1215631
  12. [R] E.H. Rothe, A relation between the type numbers of a critical point and the index of the corresponding field of gradient vectors, Math. Nachr.4 (1950-51), 12-27. Zbl0044.31903MR40597
  13. [Sa] S. Sakaguchi, Critical points of solutions to the obstacle problem in the plane, preprint. 
  14. [Sch] F. Schulz, Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions, Springer Verlag, New York, 1990. Zbl0709.35038MR1079936
  15. [T] G. Talenti, On functions, whose lines of steepest descent bend proportionally to level lines, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10 (1983), 587-605. Zbl0542.35007MR753157
  16. [V] I.N. Vekua, Generalized Analytic Functions, Pergamon Press, Oxford, 1962. Zbl0100.07603MR150320
  17. [Wa] J.L. Walsh, The Location of Critical Points of Analytic and Harmonic Functions, American Mathematical Society, New York, 1950. Zbl0041.04101MR37350
  18. [We] C.E. Weatherburn, Differential Geometry of Three Dimensions, Cambridge University Press, Cambridge, 1931. JFM56.0589.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.