Interpolation manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)
- Volume: 11, Issue: 2, page 177-211
- ISSN: 0391-173X
Access Full Article
topHow to cite
topSaerens, Rita. "Interpolation manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.2 (1984): 177-211. <http://eudml.org/doc/83927>.
@article{Saerens1984,
author = {Saerens, Rita},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {interpolation manifold; peak-interpolation set; unit polydisk; strictly pseudoconvex domain},
language = {eng},
number = {2},
pages = {177-211},
publisher = {Scuola normale superiore},
title = {Interpolation manifolds},
url = {http://eudml.org/doc/83927},
volume = {11},
year = {1984},
}
TY - JOUR
AU - Saerens, Rita
TI - Interpolation manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 2
SP - 177
EP - 211
LA - eng
KW - interpolation manifold; peak-interpolation set; unit polydisk; strictly pseudoconvex domain
UR - http://eudml.org/doc/83927
ER -
References
top- [1] W.G. Bade - P H.C. Curtis, Embedding theorems for commutative Banach algebras, Pacific J. Math., 18 (1966), pp. 391-409. Zbl0156.37002MR202001
- [2] E. Bishop, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc., 13 (1962), pp. 140-143. Zbl0101.08807MR133462
- [3] D. BurnsJr. - E.L. Stout, Extending functions from submanifolds of the boundary, Duke Math. J., 43 (1976), pp. 391-404. Zbl0328.32013MR414936
- [4] J. Chaumat - A.-M. Chollet, Ensembles pics pour A∞(D), Ann. Inst. Fourier (Grenoble), 29, 3 (1979), pp. 171-200. Zbl0398.32004
- [5] E.M. Čirka, The theorems of Lindetöf and Fatou in C n, Math. USSR-Sb., 21 (1973), pp. 619-639. Zbl0297.32001
- [6] E.M. Čirka - G.M. Henkin, Boundary properties of holomorphic functions of several complex variables, J. Soviet Math., 5 (1976), pp. 612-687. Zbl0375.32005MR477155
- [7] A.-M. Chollet, Carleson sets in Cn, n ≽ 1; Aspects of Contemporary Complex Analysis, Academic Press, London (1980), pp. 119-136. Zbl0493.32019
- [8] A.M. Davie - B.K. Øksendal, Peak interpolation sets for some algebras of analytic functions, Pacific J. Math., 41 (1972), pp. 81-87. Zbl0218.46050MR310293
- [9] T. Duchamp, The classification of Legendre immersions, Ann. Inst. Fourier (Grenoble), to appear.
- [10] Fr.FORELLI, Measures orthogonal to polydisc algebras, J. Math. Mech., 17 (1968), pp. 1073-1086. Zbl0157.44502MR223893
- [11] J.E. Fornaess - B.S. Henriksen, Characterisation of global peak sets for A∞(D), Math. Ann., 259 (1982), pp. 125-130. Zbl0489.32010
- [12] J. Globevnik, Peaks sets for polydisc algebras, Michigan Math. J., 29 (1982), pp. 221-227. Zbl0477.32015MR654482
- [13] J. Glovebnik, Norm preserving interpolation sets for polydisc algebras, Math. Proc. Cambridge Philos. Soc., 91 (1982), pp. 291-303. Zbl0484.32006MR641530
- [14] M. Hakim - N. Sibony, Ensembles pics dans des domaines strictement pseudoconvexes, Duke Math. J., 45 (1978), pp. 601-617. Zbl0402.32008MR507460
- [15] G.M. Henkin - A.E. Tumanov, Interpolation submanifolds of pseudoconvex domains, Translations Amer. Math. Soc., 115 (1980), pp. 59-69. Zbl0455.32009
- [16] B.S. Henriksen, A peak set of Hausdorff dimension 2n — 1 for the algebra A (D) in the boundary of a domain D with C∞-boundary in Cn, Math. Ann., 259 (1982), pp. 271-277. Zbl0483.32011
- [17] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962. Zbl0117.34001MR133008
- [18] S.G. Krantz, Boundary values and estimates for holomorphic functions of several complex variables, Duke Math. J., 47 (1980), pp. 81-98. Zbl0431.32004MR563368
- [19] S.G. Krantz, Function Theory of Several Complex Variables, John Wiley & Sons, New York, 1982. Zbl0471.32008MR635928
- [20] K.R. Lucas, Submanifolds of Dimension n—1 in εn with Normals Ssatisfying a Lipschitz Condition, Studies in Eigenvalue problems, Technical Report18, University of Kansas, 1957.
- [21] G. Lumer, Algèbres de Fonctions et Espaces de Hardy, Lect. Notes Math., 75, Springer-Verlag, Berlin, 1968. Zbl0184.35804MR246128
- [22] A. Nagel, Smooth zero sets and interpolation sets for some algebras of holomorphic functions on strictly pseudoconvex domains, Duke Math. J., 43 (1976), pp. 323-348. Zbl0343.32016MR442284
- [23] A. Nagel and W. Rudin, Local boundary behavior of bounded holomorphic functions, Canad. J. Math., 30 (1978), pp. 583-592. Zbl0427.32006MR486595
- [24] R.M. Range - Y.-T. Siu, Ck -approximation by holomorphic functions and ∂-closed forms on Ck-submanifolds of a complex manifold, Math. Ann., 210 (1974), pp. 105-122. Zbl0275.32008
- [25] W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, New York, 1969., Zbl0177.34101MR255841
- [26] W. Rudin, Peak-interpolation sets of class C1, Pacific J. Math., 75 (1978) pp. 267-279. Zbl0383.32007MR486630
- [27] W. Rudin, Holomorphic Lipschitz functions in balls, Comment. Math. Helv., 53 (1978), pp. 143-147. Zbl0391.32001MR486596
- [28] W. Rudin, Function Theory in the Unit Ball of Cn, Springer-Verlag, New York, 1980. Zbl0495.32001MR601594
- [29] R. Saerens, Interpolation manifolds (thesis), University of Washington, 1983. Zbl0579.32023
- [30] E.M. Stein, Boundary values of holomorphic functions, Bull. Amer. Math. Soc., 76 (1970), pp. 1292-1296. Zbl0211.10202MR273055
- [31] E.M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Mathematical Notes, Princeton University Press, Princeton, 1972. Zbl0242.32005MR473215
- [32] E.M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc., 79 (1973), pp. 440-445. Zbl0257.35040MR315302
- [33] E.L. Stout, The Theory of Uniform Algebras, Bogden & Quigley, Tarrytownon-Hudson, 1971. Zbl0286.46049MR423083
- [34] E.L. Stout, On the multiplicative Cousin problem with bounded data, Ann. Scuola Norm. Sup. Pisa. Cl. Sci., 27 (1973), pp. 1-17. Zbl0261.32008MR367282
- [35] E.L. Stout, Hp- functions on strictly pseudoconvex domains, Amer. J. Math., 98 (1976), pp. 821-852. Zbl0341.32013MR422685
- [36] E.L. Stout, Interpolation manifolds; Recent Developments in Several Complex Variables, Princeton University Press, Princeton (1981), pp. 373-391. Zbl0486.32010MR627769
- [37] E.L. Stout, Dimension of peak-interpolation sets, Proc. Amer. Math. Soc., 86 (1982), pp. 413-416. Zbl0502.32012MR671206
- [38] B.A. Taylor - D.L. Williams, The peaks sets of Am, Proc. Amer. Math. Soc., 24 (1970), pp. 604-606. Zbl0187.38602MR255828
- [39] A.E. Tumanov, A peak set for the disc algebra of metric dimension 2.5 in the three dimensional unit sphere, Math. USSR-Izv., 11 (1977), pp. 353-359. Zbl0379.46048
- [40] B.M. Weinstock, Zero-sets of continuous holomorphic functions on the boundary of a strongly pseudoconvex domain, J. London Math. Soc., 18 (1978), pp. 484-488. Zbl0413.32008MR518233
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.