Interpolation manifolds

Rita Saerens

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 2, page 177-211
  • ISSN: 0391-173X

How to cite

top

Saerens, Rita. "Interpolation manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.2 (1984): 177-211. <http://eudml.org/doc/83927>.

@article{Saerens1984,
author = {Saerens, Rita},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {interpolation manifold; peak-interpolation set; unit polydisk; strictly pseudoconvex domain},
language = {eng},
number = {2},
pages = {177-211},
publisher = {Scuola normale superiore},
title = {Interpolation manifolds},
url = {http://eudml.org/doc/83927},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Saerens, Rita
TI - Interpolation manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 2
SP - 177
EP - 211
LA - eng
KW - interpolation manifold; peak-interpolation set; unit polydisk; strictly pseudoconvex domain
UR - http://eudml.org/doc/83927
ER -

References

top
  1. [1] W.G. Bade - P H.C. Curtis, Embedding theorems for commutative Banach algebras, Pacific J. Math., 18 (1966), pp. 391-409. Zbl0156.37002MR202001
  2. [2] E. Bishop, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc., 13 (1962), pp. 140-143. Zbl0101.08807MR133462
  3. [3] D. BurnsJr. - E.L. Stout, Extending functions from submanifolds of the boundary, Duke Math. J., 43 (1976), pp. 391-404. Zbl0328.32013MR414936
  4. [4] J. Chaumat - A.-M. Chollet, Ensembles pics pour A∞(D), Ann. Inst. Fourier (Grenoble), 29, 3 (1979), pp. 171-200. Zbl0398.32004
  5. [5] E.M. Čirka, The theorems of Lindetöf and Fatou in C n, Math. USSR-Sb., 21 (1973), pp. 619-639. Zbl0297.32001
  6. [6] E.M. Čirka - G.M. Henkin, Boundary properties of holomorphic functions of several complex variables, J. Soviet Math., 5 (1976), pp. 612-687. Zbl0375.32005MR477155
  7. [7] A.-M. Chollet, Carleson sets in Cn, n ≽ 1; Aspects of Contemporary Complex Analysis, Academic Press, London (1980), pp. 119-136. Zbl0493.32019
  8. [8] A.M. Davie - B.K. Øksendal, Peak interpolation sets for some algebras of analytic functions, Pacific J. Math., 41 (1972), pp. 81-87. Zbl0218.46050MR310293
  9. [9] T. Duchamp, The classification of Legendre immersions, Ann. Inst. Fourier (Grenoble), to appear. 
  10. [10] Fr.FORELLI, Measures orthogonal to polydisc algebras, J. Math. Mech., 17 (1968), pp. 1073-1086. Zbl0157.44502MR223893
  11. [11] J.E. Fornaess - B.S. Henriksen, Characterisation of global peak sets for A∞(D), Math. Ann., 259 (1982), pp. 125-130. Zbl0489.32010
  12. [12] J. Globevnik, Peaks sets for polydisc algebras, Michigan Math. J., 29 (1982), pp. 221-227. Zbl0477.32015MR654482
  13. [13] J. Glovebnik, Norm preserving interpolation sets for polydisc algebras, Math. Proc. Cambridge Philos. Soc., 91 (1982), pp. 291-303. Zbl0484.32006MR641530
  14. [14] M. Hakim - N. Sibony, Ensembles pics dans des domaines strictement pseudoconvexes, Duke Math. J., 45 (1978), pp. 601-617. Zbl0402.32008MR507460
  15. [15] G.M. Henkin - A.E. Tumanov, Interpolation submanifolds of pseudoconvex domains, Translations Amer. Math. Soc., 115 (1980), pp. 59-69. Zbl0455.32009
  16. [16] B.S. Henriksen, A peak set of Hausdorff dimension 2n — 1 for the algebra A (D) in the boundary of a domain D with C∞-boundary in Cn, Math. Ann., 259 (1982), pp. 271-277. Zbl0483.32011
  17. [17] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962. Zbl0117.34001MR133008
  18. [18] S.G. Krantz, Boundary values and estimates for holomorphic functions of several complex variables, Duke Math. J., 47 (1980), pp. 81-98. Zbl0431.32004MR563368
  19. [19] S.G. Krantz, Function Theory of Several Complex Variables, John Wiley & Sons, New York, 1982. Zbl0471.32008MR635928
  20. [20] K.R. Lucas, Submanifolds of Dimension n—1 in εn with Normals Ssatisfying a Lipschitz Condition, Studies in Eigenvalue problems, Technical Report18, University of Kansas, 1957. 
  21. [21] G. Lumer, Algèbres de Fonctions et Espaces de Hardy, Lect. Notes Math., 75, Springer-Verlag, Berlin, 1968. Zbl0184.35804MR246128
  22. [22] A. Nagel, Smooth zero sets and interpolation sets for some algebras of holomorphic functions on strictly pseudoconvex domains, Duke Math. J., 43 (1976), pp. 323-348. Zbl0343.32016MR442284
  23. [23] A. Nagel and W. Rudin, Local boundary behavior of bounded holomorphic functions, Canad. J. Math., 30 (1978), pp. 583-592. Zbl0427.32006MR486595
  24. [24] R.M. Range - Y.-T. Siu, Ck -approximation by holomorphic functions and ∂-closed forms on Ck-submanifolds of a complex manifold, Math. Ann., 210 (1974), pp. 105-122. Zbl0275.32008
  25. [25] W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, New York, 1969., Zbl0177.34101MR255841
  26. [26] W. Rudin, Peak-interpolation sets of class C1, Pacific J. Math., 75 (1978) pp. 267-279. Zbl0383.32007MR486630
  27. [27] W. Rudin, Holomorphic Lipschitz functions in balls, Comment. Math. Helv., 53 (1978), pp. 143-147. Zbl0391.32001MR486596
  28. [28] W. Rudin, Function Theory in the Unit Ball of Cn, Springer-Verlag, New York, 1980. Zbl0495.32001MR601594
  29. [29] R. Saerens, Interpolation manifolds (thesis), University of Washington, 1983. Zbl0579.32023
  30. [30] E.M. Stein, Boundary values of holomorphic functions, Bull. Amer. Math. Soc., 76 (1970), pp. 1292-1296. Zbl0211.10202MR273055
  31. [31] E.M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Mathematical Notes, Princeton University Press, Princeton, 1972. Zbl0242.32005MR473215
  32. [32] E.M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc., 79 (1973), pp. 440-445. Zbl0257.35040MR315302
  33. [33] E.L. Stout, The Theory of Uniform Algebras, Bogden & Quigley, Tarrytownon-Hudson, 1971. Zbl0286.46049MR423083
  34. [34] E.L. Stout, On the multiplicative Cousin problem with bounded data, Ann. Scuola Norm. Sup. Pisa. Cl. Sci., 27 (1973), pp. 1-17. Zbl0261.32008MR367282
  35. [35] E.L. Stout, Hp- functions on strictly pseudoconvex domains, Amer. J. Math., 98 (1976), pp. 821-852. Zbl0341.32013MR422685
  36. [36] E.L. Stout, Interpolation manifolds; Recent Developments in Several Complex Variables, Princeton University Press, Princeton (1981), pp. 373-391. Zbl0486.32010MR627769
  37. [37] E.L. Stout, Dimension of peak-interpolation sets, Proc. Amer. Math. Soc., 86 (1982), pp. 413-416. Zbl0502.32012MR671206
  38. [38] B.A. Taylor - D.L. Williams, The peaks sets of Am, Proc. Amer. Math. Soc., 24 (1970), pp. 604-606. Zbl0187.38602MR255828
  39. [39] A.E. Tumanov, A peak set for the disc algebra of metric dimension 2.5 in the three dimensional unit sphere, Math. USSR-Izv., 11 (1977), pp. 353-359. Zbl0379.46048
  40. [40] B.M. Weinstock, Zero-sets of continuous holomorphic functions on the boundary of a strongly pseudoconvex domain, J. London Math. Soc., 18 (1978), pp. 484-488. Zbl0413.32008MR518233

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.