On the isoperimetric inequality for minimal surfaces

Peter Li; Richard Schoen; Shing-Tung Yau

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 2, page 237-244
  • ISSN: 0391-173X

How to cite

top

Li, Peter, Schoen, Richard, and Yau, Shing-Tung. "On the isoperimetric inequality for minimal surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.2 (1984): 237-244. <http://eudml.org/doc/83929>.

@article{Li1984,
author = {Li, Peter, Schoen, Richard, Yau, Shing-Tung},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {isoperimetric inequality; two dimensional minimal surfaces; weakly connected" boundaries},
language = {eng},
number = {2},
pages = {237-244},
publisher = {Scuola normale superiore},
title = {On the isoperimetric inequality for minimal surfaces},
url = {http://eudml.org/doc/83929},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Li, Peter
AU - Schoen, Richard
AU - Yau, Shing-Tung
TI - On the isoperimetric inequality for minimal surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 2
SP - 237
EP - 244
LA - eng
KW - isoperimetric inequality; two dimensional minimal surfaces; weakly connected" boundaries
UR - http://eudml.org/doc/83929
ER -

References

top
  1. [1] T. Carleman, Zur Theorie der Minimalflächen, Math. Z., 9 (1921), pp. 154-160. Zbl48.0590.02MR1544458JFM48.0590.02
  2. [2] J. Feinberg, The Isoperimentric Inequality for Doubly, connected Minimal Surfaces in RN, J. Analyse Math., 32 (1977), pp. 249-278. Zbl0387.53002MR461306
  3. [3] S. Hildebrandt, Maximum Principles for Minimal Surfaces and for Surfaces of Continuous Mean Curvature, Math. Z., 128 (1972), pp. 157-173. Zbl0253.53005MR312406
  4. [4] R. Osserman, Variations on a Theme of Plateau, « Global Analysis and Its Applications », Vol. III, International Atomic Energy Agency, Vienna, 1974. Zbl0308.49044MR440454
  5. [5] R. Osserman - M. Schiffer, Doubly-connected Minimal Surfaces, Arch. Rational Mech. Anal., 58 (1975), pp. 285-307. Zbl0352.53005MR385687
  6. [6] S.T. Yau, Problem Section, « Seminar on Differential Geometry », Ann. of Math., 102, Princeton U. Press, Princeton, N.J. (1982), pp. 669-706. Zbl0471.00020MR645762
  7. [7] I. Chavel, On A. Hurwitz' Method in Isoperimetric Inequalities, Proc. AMS, 71 (1978), pp. 275-279. Zbl0395.52007MR493885

NotesEmbed ?

top

You must be logged in to post comments.