On the isoperimetric inequality for minimal surfaces

Peter Li; Richard Schoen; Shing-Tung Yau

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 2, page 237-244
  • ISSN: 0391-173X

How to cite

top

Li, Peter, Schoen, Richard, and Yau, Shing-Tung. "On the isoperimetric inequality for minimal surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.2 (1984): 237-244. <http://eudml.org/doc/83929>.

@article{Li1984,
author = {Li, Peter, Schoen, Richard, Yau, Shing-Tung},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {isoperimetric inequality; two dimensional minimal surfaces; weakly connected" boundaries},
language = {eng},
number = {2},
pages = {237-244},
publisher = {Scuola normale superiore},
title = {On the isoperimetric inequality for minimal surfaces},
url = {http://eudml.org/doc/83929},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Li, Peter
AU - Schoen, Richard
AU - Yau, Shing-Tung
TI - On the isoperimetric inequality for minimal surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 2
SP - 237
EP - 244
LA - eng
KW - isoperimetric inequality; two dimensional minimal surfaces; weakly connected" boundaries
UR - http://eudml.org/doc/83929
ER -

References

top
  1. [1] T. Carleman, Zur Theorie der Minimalflächen, Math. Z., 9 (1921), pp. 154-160. Zbl48.0590.02MR1544458JFM48.0590.02
  2. [2] J. Feinberg, The Isoperimentric Inequality for Doubly, connected Minimal Surfaces in RN, J. Analyse Math., 32 (1977), pp. 249-278. Zbl0387.53002MR461306
  3. [3] S. Hildebrandt, Maximum Principles for Minimal Surfaces and for Surfaces of Continuous Mean Curvature, Math. Z., 128 (1972), pp. 157-173. Zbl0253.53005MR312406
  4. [4] R. Osserman, Variations on a Theme of Plateau, « Global Analysis and Its Applications », Vol. III, International Atomic Energy Agency, Vienna, 1974. Zbl0308.49044MR440454
  5. [5] R. Osserman - M. Schiffer, Doubly-connected Minimal Surfaces, Arch. Rational Mech. Anal., 58 (1975), pp. 285-307. Zbl0352.53005MR385687
  6. [6] S.T. Yau, Problem Section, « Seminar on Differential Geometry », Ann. of Math., 102, Princeton U. Press, Princeton, N.J. (1982), pp. 669-706. Zbl0471.00020MR645762
  7. [7] I. Chavel, On A. Hurwitz' Method in Isoperimetric Inequalities, Proc. AMS, 71 (1978), pp. 275-279. Zbl0395.52007MR493885

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.