On the isoperimetric inequality for minimal surfaces
Peter Li; Richard Schoen; Shing-Tung Yau
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)
- Volume: 11, Issue: 2, page 237-244
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [1] T. Carleman, Zur Theorie der Minimalflächen, Math. Z., 9 (1921), pp. 154-160. Zbl48.0590.02MR1544458JFM48.0590.02
- [2] J. Feinberg, The Isoperimentric Inequality for Doubly, connected Minimal Surfaces in RN, J. Analyse Math., 32 (1977), pp. 249-278. Zbl0387.53002MR461306
- [3] S. Hildebrandt, Maximum Principles for Minimal Surfaces and for Surfaces of Continuous Mean Curvature, Math. Z., 128 (1972), pp. 157-173. Zbl0253.53005MR312406
- [4] R. Osserman, Variations on a Theme of Plateau, « Global Analysis and Its Applications », Vol. III, International Atomic Energy Agency, Vienna, 1974. Zbl0308.49044MR440454
- [5] R. Osserman - M. Schiffer, Doubly-connected Minimal Surfaces, Arch. Rational Mech. Anal., 58 (1975), pp. 285-307. Zbl0352.53005MR385687
- [6] S.T. Yau, Problem Section, « Seminar on Differential Geometry », Ann. of Math., 102, Princeton U. Press, Princeton, N.J. (1982), pp. 669-706. Zbl0471.00020MR645762
- [7] I. Chavel, On A. Hurwitz' Method in Isoperimetric Inequalities, Proc. AMS, 71 (1978), pp. 275-279. Zbl0395.52007MR493885