The isoperimetric inequality for a minimal surface with radially connected boundary
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)
- Volume: 17, Issue: 4, page 583-593
- ISSN: 0391-173X
Access Full Article
topHow to cite
topChoe, Jaigyoung. "The isoperimetric inequality for a minimal surface with radially connected boundary." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.4 (1990): 583-593. <http://eudml.org/doc/84088>.
@article{Choe1990,
author = {Choe, Jaigyoung},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {isoperimetric inequality; minimal submanifold},
language = {eng},
number = {4},
pages = {583-593},
publisher = {Scuola normale superiore},
title = {The isoperimetric inequality for a minimal surface with radially connected boundary},
url = {http://eudml.org/doc/84088},
volume = {17},
year = {1990},
}
TY - JOUR
AU - Choe, Jaigyoung
TI - The isoperimetric inequality for a minimal surface with radially connected boundary
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 4
SP - 583
EP - 593
LA - eng
KW - isoperimetric inequality; minimal submanifold
UR - http://eudml.org/doc/84088
ER -
References
top- [A] F.J. Almgren, Jr., Optimal isoperimetric inequalities, Indiana Univ. Math. J., 35 (1986), 451-547. Zbl0585.49030
- [C] T. Carleman, Zur Theorie der Minimalflächen, Math. Z., 9 (1921), 154-160. Zbl48.0590.02JFM48.0590.02
- [F] J. Feinberg, The isoperimetric inequality for doubly connected minimal surfaces in RN, J. Analyse Math., 32 (1977), 249-278. Zbl0387.53002
- [G] M. Gromov, Filling Riemannian manifolds, J. Differential Geom., 18 (1983), 1-147. Zbl0515.53037
- [H] R.A. Horn, On Fenchel's theorem, Amer. Math. Monthly, 78 (1971), 380-381. Zbl0209.24901
- [LSY] P. Li - R. Schoen - S.-T. Yau, On the isoperimetric inequality for minimal surfaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 237-244. Zbl0551.49020
- [OS] R. Osserman - M. Schiffer, Doubly-connected minimal surfaces, Arch. Rational Mech. Anal., 58 (1975), 285-307. Zbl0352.53005
- [S] N. Smale, A bridge principle for minimal and constant mean curvature submanifolds of RN, Invent. Math., 90 (1987), 505-549. Zbl0637.49020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.