The isoperimetric inequality for a minimal surface with radially connected boundary

Jaigyoung Choe

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)

  • Volume: 17, Issue: 4, page 583-593
  • ISSN: 0391-173X

How to cite

top

Choe, Jaigyoung. "The isoperimetric inequality for a minimal surface with radially connected boundary." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.4 (1990): 583-593. <http://eudml.org/doc/84088>.

@article{Choe1990,
author = {Choe, Jaigyoung},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {isoperimetric inequality; minimal submanifold},
language = {eng},
number = {4},
pages = {583-593},
publisher = {Scuola normale superiore},
title = {The isoperimetric inequality for a minimal surface with radially connected boundary},
url = {http://eudml.org/doc/84088},
volume = {17},
year = {1990},
}

TY - JOUR
AU - Choe, Jaigyoung
TI - The isoperimetric inequality for a minimal surface with radially connected boundary
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 4
SP - 583
EP - 593
LA - eng
KW - isoperimetric inequality; minimal submanifold
UR - http://eudml.org/doc/84088
ER -

References

top
  1. [A] F.J. Almgren, Jr., Optimal isoperimetric inequalities, Indiana Univ. Math. J., 35 (1986), 451-547. Zbl0585.49030
  2. [C] T. Carleman, Zur Theorie der Minimalflächen, Math. Z., 9 (1921), 154-160. Zbl48.0590.02JFM48.0590.02
  3. [F] J. Feinberg, The isoperimetric inequality for doubly connected minimal surfaces in RN, J. Analyse Math., 32 (1977), 249-278. Zbl0387.53002
  4. [G] M. Gromov, Filling Riemannian manifolds, J. Differential Geom., 18 (1983), 1-147. Zbl0515.53037
  5. [H] R.A. Horn, On Fenchel's theorem, Amer. Math. Monthly, 78 (1971), 380-381. Zbl0209.24901
  6. [LSY] P. Li - R. Schoen - S.-T. Yau, On the isoperimetric inequality for minimal surfaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 237-244. Zbl0551.49020
  7. [OS] R. Osserman - M. Schiffer, Doubly-connected minimal surfaces, Arch. Rational Mech. Anal., 58 (1975), 285-307. Zbl0352.53005
  8. [S] N. Smale, A bridge principle for minimal and constant mean curvature submanifolds of RN, Invent. Math., 90 (1987), 505-549. Zbl0637.49020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.