Riduzioni omotopicamente invarianti di insiemi parzialmente ordinati

Andrea Brini; Antonio Terrusi

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 3, page 381-393
  • ISSN: 0391-173X

How to cite

top

Brini, Andrea, and Terrusi, Antonio. "Riduzioni omotopicamente invarianti di insiemi parzialmente ordinati." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.3 (1984): 381-393. <http://eudml.org/doc/83938>.

@article{Brini1984,
author = {Brini, Andrea, Terrusi, Antonio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {poset; homotopy type; classifying space; Cohen-Macaulay property; semimodular lattices; Möbius function; supersolvable semimodular lattices},
language = {ita},
number = {3},
pages = {381-393},
publisher = {Scuola normale superiore},
title = {Riduzioni omotopicamente invarianti di insiemi parzialmente ordinati},
url = {http://eudml.org/doc/83938},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Brini, Andrea
AU - Terrusi, Antonio
TI - Riduzioni omotopicamente invarianti di insiemi parzialmente ordinati
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 3
SP - 381
EP - 393
LA - ita
KW - poset; homotopy type; classifying space; Cohen-Macaulay property; semimodular lattices; Möbius function; supersolvable semimodular lattices
UR - http://eudml.org/doc/83938
ER -

References

top
  1. [1] M. Barnabei - A. Brini - G.C. Rota, Un'introduzione alla teoria delle funzioni di Möbius, « Matroid Theory and its Applications » (A. Barlotti, ed.), CIME, Varenna, 1980, pp. 7-109. MR863008
  2. [2] A. Brini, Some homological properties of partially ordered sets, Advances in Math., 43 (1982), pp. 197-201. Zbl0484.06003MR644672
  3. [3] A. Bjorner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc., 260 (1980), pp. 159-183. Zbl0441.06002MR570784
  4. [4] A. Bjorner, Homotopy type of posets and lattice complementation, J. Combinatorial Theory Ser.A, 30 (1981), pp. 90-100. Zbl0442.55011MR607041
  5. [5] J. Folkman, The homology groups of a lattice, J. Math. Mech., 15 (1966), pp. 631-636. Zbl0146.01602MR188116
  6. [6] G. Gratzer, General Lattice Theory, Birkhauser, Basel and Stuttgart, 1978. Zbl0385.06015MR504338
  7. [7] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials and polytopes, Ann. of Math., 96 (1972), pp. 318-337. Zbl0237.14019MR304376
  8. [8] M. Rochster, Cohen-Macaulay rings, combinatorics and simplicial complexes, « Proc. 2nd Oklahoma Ring Theory Conf. » (B. McDonald and R. Morris, eds.), Dekker, New York, 1977, pp. 171-223. Zbl0351.13009MR441987
  9. [9] H. Lakser, The homology of a lattice, Discrete Math., 1 (1971), pp. 187-192. Zbl0227.06002MR288755
  10. [10] C. Maunder: Algebraic Topology, Van Nostrand, London, 1970. Zbl0205.27302
  11. [11] D. Quillen, Higher algebraic K-theory I, « Algebraic K-theory I » (H. Bass, ed.), Lecture Notes in Mathematics, no. 341, Springer, Berlin, 1973, pp. 85-147. Zbl0292.18004MR338129
  12. [12] D. Quillen, Finite generations of the groups Ki of rings of algebraic integers, « Algebraic K-theory I » (H. Bass, ed.), Lecture Notes in Mathematics, no. 341, Springer, Berlin, 1973, pp. 179-199. Zbl0355.18018MR349812
  13. [13] D. Quillen, Homotopy properties of posets of nontrivial p-subgroups of a group, Advances in Math., 28 (1978), pp. 101-128. Zbl0388.55007MR493916
  14. [14] G. Rfisner, Cohen-Macaulay quotients of polynomial rings, Advances in Math., 21 (1976), pp. 30-49. Zbl0345.13017MR407036
  15. [15] G.C. Rota, On the foundations of combinatorial theory, I : Theory of Möbius functions, Z. Wahrsch., 2 (1964), pp. 340-368. Zbl0121.02406MR174487
  16. [16] L. Solomon, The Steinberg character of a finite group with BN-pair, « Theory of Finite Groups » (R. Brauer and C. H. Sah, eds.), Benjamin, New York, 1969, pp. 213-221. Zbl0216.08001MR246951
  17. [17] R. Stanley, Supersolvable lattices, Algebra Universalis, 2 (1972), pp. 197-217. Zbl0256.06002MR309815
  18. [18] R. Stanley, Cohen-Macaulay complexes, « Higher Combinatorics » (M. Aigner, ed.), Reidel, Boston, 1977, pp. 51-62. Zbl0376.55007MR572989
  19. [19] J. Walker, Homotopy type and Euler characteristic of partially ordered sets, Europ. J. Comb., 2 (1981), pp. 373-384. Zbl0472.06004MR638413

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.