Riduzioni omotopicamente invarianti di insiemi parzialmente ordinati
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)
- Volume: 11, Issue: 3, page 381-393
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBrini, Andrea, and Terrusi, Antonio. "Riduzioni omotopicamente invarianti di insiemi parzialmente ordinati." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.3 (1984): 381-393. <http://eudml.org/doc/83938>.
@article{Brini1984,
author = {Brini, Andrea, Terrusi, Antonio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {poset; homotopy type; classifying space; Cohen-Macaulay property; semimodular lattices; Möbius function; supersolvable semimodular lattices},
language = {ita},
number = {3},
pages = {381-393},
publisher = {Scuola normale superiore},
title = {Riduzioni omotopicamente invarianti di insiemi parzialmente ordinati},
url = {http://eudml.org/doc/83938},
volume = {11},
year = {1984},
}
TY - JOUR
AU - Brini, Andrea
AU - Terrusi, Antonio
TI - Riduzioni omotopicamente invarianti di insiemi parzialmente ordinati
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 3
SP - 381
EP - 393
LA - ita
KW - poset; homotopy type; classifying space; Cohen-Macaulay property; semimodular lattices; Möbius function; supersolvable semimodular lattices
UR - http://eudml.org/doc/83938
ER -
References
top- [1] M. Barnabei - A. Brini - G.C. Rota, Un'introduzione alla teoria delle funzioni di Möbius, « Matroid Theory and its Applications » (A. Barlotti, ed.), CIME, Varenna, 1980, pp. 7-109. MR863008
- [2] A. Brini, Some homological properties of partially ordered sets, Advances in Math., 43 (1982), pp. 197-201. Zbl0484.06003MR644672
- [3] A. Bjorner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc., 260 (1980), pp. 159-183. Zbl0441.06002MR570784
- [4] A. Bjorner, Homotopy type of posets and lattice complementation, J. Combinatorial Theory Ser.A, 30 (1981), pp. 90-100. Zbl0442.55011MR607041
- [5] J. Folkman, The homology groups of a lattice, J. Math. Mech., 15 (1966), pp. 631-636. Zbl0146.01602MR188116
- [6] G. Gratzer, General Lattice Theory, Birkhauser, Basel and Stuttgart, 1978. Zbl0385.06015MR504338
- [7] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials and polytopes, Ann. of Math., 96 (1972), pp. 318-337. Zbl0237.14019MR304376
- [8] M. Rochster, Cohen-Macaulay rings, combinatorics and simplicial complexes, « Proc. 2nd Oklahoma Ring Theory Conf. » (B. McDonald and R. Morris, eds.), Dekker, New York, 1977, pp. 171-223. Zbl0351.13009MR441987
- [9] H. Lakser, The homology of a lattice, Discrete Math., 1 (1971), pp. 187-192. Zbl0227.06002MR288755
- [10] C. Maunder: Algebraic Topology, Van Nostrand, London, 1970. Zbl0205.27302
- [11] D. Quillen, Higher algebraic K-theory I, « Algebraic K-theory I » (H. Bass, ed.), Lecture Notes in Mathematics, no. 341, Springer, Berlin, 1973, pp. 85-147. Zbl0292.18004MR338129
- [12] D. Quillen, Finite generations of the groups Ki of rings of algebraic integers, « Algebraic K-theory I » (H. Bass, ed.), Lecture Notes in Mathematics, no. 341, Springer, Berlin, 1973, pp. 179-199. Zbl0355.18018MR349812
- [13] D. Quillen, Homotopy properties of posets of nontrivial p-subgroups of a group, Advances in Math., 28 (1978), pp. 101-128. Zbl0388.55007MR493916
- [14] G. Rfisner, Cohen-Macaulay quotients of polynomial rings, Advances in Math., 21 (1976), pp. 30-49. Zbl0345.13017MR407036
- [15] G.C. Rota, On the foundations of combinatorial theory, I : Theory of Möbius functions, Z. Wahrsch., 2 (1964), pp. 340-368. Zbl0121.02406MR174487
- [16] L. Solomon, The Steinberg character of a finite group with BN-pair, « Theory of Finite Groups » (R. Brauer and C. H. Sah, eds.), Benjamin, New York, 1969, pp. 213-221. Zbl0216.08001MR246951
- [17] R. Stanley, Supersolvable lattices, Algebra Universalis, 2 (1972), pp. 197-217. Zbl0256.06002MR309815
- [18] R. Stanley, Cohen-Macaulay complexes, « Higher Combinatorics » (M. Aigner, ed.), Reidel, Boston, 1977, pp. 51-62. Zbl0376.55007MR572989
- [19] J. Walker, Homotopy type and Euler characteristic of partially ordered sets, Europ. J. Comb., 2 (1981), pp. 373-384. Zbl0472.06004MR638413
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.