Complements in modular and semimodular lattices.
We give a new proof of the fact that finite bipartite graphs cannot be axiomatized by finitely many first-order sentences among finite graphs. (This fact is a consequence of a general theorem proved by L. Ham and M. Jackson, and the counterpart of this fact for all bipartite graphs in the class of all graphs is a well-known consequence of the compactness theorem.) Also, to exemplify that our method is applicable in various fields of mathematics, we prove that neither finite simple groups, nor the...
In 1954, Kontorovich and Plotkin introduced the concept of a modular chain in a lattice to obtain a lattice-theoretic characterization of the class of torsion-free nilpotent groups. We determine the structure of finite groups with modular chains. It turns out that this class of groups lies strictly between the class of finite groups with lower semimodular subgroup lattice and the projective closure of the class of finite nilpotent groups.
Whereas the Dedekind-MacNeille completion D(P) of a poset P is the minimal lattice L such that every element of L is a join of elements of P, the minimal strict completion D(P)∗ is the minimal lattice L such that the poset of join-irreducible elements of L is isomorphic to P. (These two completions are the same if every element of P is join-irreducible). In this paper we study lattices which are minimal strict completions of finite orders. Such lattices are in one-to-one correspondence with finite...
In this paper we apply the notion of cell of a lattice for dealing with graph automorphisms of lattices (in connection with a problem proposed by G. Birkhoff).
This paper deals with the relations between graph automorphisms and direct factors of a semimodular lattice of locally finite length.