Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)
- Volume: 11, Issue: 3, page 441-499
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAmick, Charles J.. "Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.3 (1984): 441-499. <http://eudml.org/doc/83941>.
@article{Amick1984,
author = {Amick, Charles J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {semilinear elliptic eigenvalue problem; existence; classical solutions; branching of solutions; solitary waves; stratified fluids},
language = {eng},
number = {3},
pages = {441-499},
publisher = {Scuola normale superiore},
title = {Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids},
url = {http://eudml.org/doc/83941},
volume = {11},
year = {1984},
}
TY - JOUR
AU - Amick, Charles J.
TI - Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 3
SP - 441
EP - 499
LA - eng
KW - semilinear elliptic eigenvalue problem; existence; classical solutions; branching of solutions; solitary waves; stratified fluids
UR - http://eudml.org/doc/83941
ER -
References
top- [1] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), pp. 487-513. Zbl0212.16504MR301587
- [2] K. Kirchgässner, Wave-solutions of reversible systems and applications, J. Differential Equations, 45 (1982), pp. 113-127. Zbl0507.35033MR662490
- [3] J. Bona - D.K. Bose - R.E.L. Turner, Finite amplitude steady waves in stratified fluid, J. Math. Pures Appl., 62 (1983), pp. 389-439. Zbl0491.35049MR735931
- [4] R.E.L. Turner, Internal waves in fluids with rapidly varying density, Ann. Scuola Norm. Sup. Pisa Cl. Sci., VIII (4) (1981), pp. 513-573. Zbl0514.76019MR656000
- [5] C.J. Amick - J.F. Toland, On solitary water-waves of finite amplitude, Arch. Rational Mech. Anal., 76 (1981), pp. 9-95. Zbl0468.76025MR629699
- [6] C.J. Amick - J.F. Toland, On periodic water waves and their convergence to solitary waves in the long-wave limit, Philos. Trans. Roy. Soc. London Ser. A, 303 (1981), pp. 633-673. Zbl0482.76029MR647410
- [7] C.J. Amick - L.E. Fraenkel - J.F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), pp. 193-214. Zbl0495.76021MR666110
- [8] C.J. Amick - R.E.L. Turner, A global theory for internal solitary waves in a two-fluid system (to appear). Zbl0631.35029
- [9] A. Bongers - H.P. Heinz - T. Küpper, Existence and bifurcation theorems for nonlinear elliptic eigenvalue problems on unbounded domains, J. Differential Equations, 47 (1983), pp. 327-357. Zbl0506.35081MR692835
- [10] R. Chiapinelli - C.A. Stuart, Bifurcation when the linearized problem has no eigenvalues, J. Differential Equations, 30 (1978), pp. 296-307. Zbl0419.34010MR521855
- [11] C.A. Stuart, Bifurcation from the continuous spectrum in the L2-theory of elliptic equations in RN, Atti 3° S.A.F.A. (1978), Confer. Sem. Mat. Univ. Bari (1979), pp. 157-180.
- [12] C.A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc., 95 (1982), pp. 169-192. Zbl0505.35010MR662670
- [13] J.F. Toland, Global bifurcation for Neumann problems without eigenvalues, J. Differential Equations, 44 (1982), pp. 82-110. Zbl0455.34015MR651688
- [14] J.F. Toland, Positive solutions of nonlinear elliptic equations: existence and nonexistence of solutions with radial symmetry in Lp(R N)Trans. A.M.S., 282 (1983), pp. 335-365. Zbl0549.35039MR728716
- [15] K. Kirchgässner - J. Scheurle, Bifurcation from the continuous spectrum and singular solutions, in Trends in applications of pure mathematics to mechanics, Vol. III, pp. 138-154, R. Knops, ed., London, Pitman, 1980. Zbl0507.34050MR714006
- [16] K. Krichgässner - J. Scheurle, Bifurcation of nonperiodic solutions of some semilinear equations in unbounded domains, in : Applications of nonlinear analysis in the physical sciences, Vol. VI, pp. 41-59, H. Amann, N. Bazely, K. Kirchgässner, eds., London, Pitman, 1981. Zbl0505.35008MR659689
- [17] C.A. Stuart, Bifurcation from the essential spectrum, in Equadiff 82, Springer Lecture Notes no. 1017, pp. 575-596, H. Knoblock, K. Schmitt, eds., Berlin, Springer-Verlag, 1983. Zbl0527.35010MR726615
- [18] C.A. Stuart, A variational approach to bifurcation in L p on an unbounded symmetrical domain, Math. Ann., 263 (1983), pp. 51-59. Zbl0513.35068MR697330
- [19] M. Esteban, Nonlinear elliptic problems in strip-like domains. Symmetry of positive vortex rings, Nonlinear Anal. T.M.A., 7 (4) (1983), pp. 365-380. Zbl0513.35035MR696736
- [20] C.J. Amick - J.F. Toland, Nonlinear elliptic eigenvalue problems on an infinite strip : global theory of bifurcation and asymptotic bifurcation, Math. Ann., 262 (1983), pp. 313-342. Zbl0489.35067MR692860
- [21] A.M. Ter-Krikorov, On internal waves in an inhomogeneous fluid, J. Appl. Math. Mech., 26 (1962), pp. 1617-1631. Zbl0127.17202MR152220
- [22] A.M. Ter-Krikorov, Théorie exacte des ondes longues stationnaires dans un liquide hétérogène, J. Mécanique, 2 (1963), pp. 351-376. MR160400
- [23] T.B. Benjamin, An exact theory of finite steady waves in continuously stratified fluids, Fluid Mechanics Research Institute, University of Essex, report no. 48.
- [24] C.S. Yih, Dynamics of nonhomogeneous fluids, New York, MacMillan, 1965. Zbl0193.55205MR183194
- [25] T.B. Benjamin, Internal waves of finite amplitude and permanent form, J. Fluid Mech., 25 (1966), pp. 241-270. Zbl0145.23602
- [26] T.B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), pp. 559-592. Zbl0147.46502
- [27] T.B. Benjamin, A unified theory of conjugate flows, Philos. Trans. Roy. Soc. London Ser. A, 269 (1971), pp. 587-643. Zbl0226.76037MR446075
- [28] R.E. Davis - A. Acrivos, Solitary internal waves in deep water, J. Fluid Mech., 29 (1967), pp. 593-607. Zbl0147.46503
- [29] M. Yanowitch, Gravity waves in a heterogeneous incompressible fluid, Comm. Pure Appl. Math., 15 (1962), pp. 45-61. Zbl0117.21905MR165792
- [30] R.R. Long, Some aspects of the flow of stratified fluids, Part I : A theoretical investigations, Tellus, 5 (1953), pp. 42-57. MR57094
- [31] R.R. Long, Solitary waves in the one- and two-fluid systems, Tellus, 8 (1956), pp. 460-471.
- [32] G.H. Keulegan, Characteristics of internal solitary waves, J. Res. Nat. Bur. Standards, 51 (1953), pp. 133-140. Zbl0052.21601
- [33] C.S. Yih, On the flow of a stratified fluid, Proc. U.S. Nat. Congr. Appl. Mech., 3rd (1958), pp. 857-861. MR108947
- [34] C.S. Yih, Exact solutions for steady two-dimensional flow of a stratified fluid, J. Fluid Mech., 9 (1960), pp. 161-174. Zbl0094.21204MR115460
- [35] A.S. Peter - J.J. Stokes, Solitary waves in liquids having nonconstant density, Comm. Pure Appl. Math., 8 (1960), pp. 115-164. Zbl0090.43301
- [36] C.J. Amick - J.F. Toland, The limiting form of internal waves, Proc. Roy. Soc. LondonA394 (1984), pp. 329-344. Zbl0553.76018MR763506
- [37] S. Agmon, The Lp approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), pp. 405-448. Zbl0093.10601MR125306
- [38] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), pp. 304-318. Zbl0222.31007MR333220
- [39] M.G. Krein - M.A. Rutman, Linear operators which leave a cone in Banach space invariant, Amer. Math. Soc. Transl. Ser.1, 10 (1950). MR38008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.