Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids

Charles J. Amick

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 3, page 441-499
  • ISSN: 0391-173X

How to cite

top

Amick, Charles J.. "Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.3 (1984): 441-499. <http://eudml.org/doc/83941>.

@article{Amick1984,
author = {Amick, Charles J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {semilinear elliptic eigenvalue problem; existence; classical solutions; branching of solutions; solitary waves; stratified fluids},
language = {eng},
number = {3},
pages = {441-499},
publisher = {Scuola normale superiore},
title = {Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids},
url = {http://eudml.org/doc/83941},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Amick, Charles J.
TI - Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 3
SP - 441
EP - 499
LA - eng
KW - semilinear elliptic eigenvalue problem; existence; classical solutions; branching of solutions; solitary waves; stratified fluids
UR - http://eudml.org/doc/83941
ER -

References

top
  1. [1] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), pp. 487-513. Zbl0212.16504MR301587
  2. [2] K. Kirchgässner, Wave-solutions of reversible systems and applications, J. Differential Equations, 45 (1982), pp. 113-127. Zbl0507.35033MR662490
  3. [3] J. Bona - D.K. Bose - R.E.L. Turner, Finite amplitude steady waves in stratified fluid, J. Math. Pures Appl., 62 (1983), pp. 389-439. Zbl0491.35049MR735931
  4. [4] R.E.L. Turner, Internal waves in fluids with rapidly varying density, Ann. Scuola Norm. Sup. Pisa Cl. Sci., VIII (4) (1981), pp. 513-573. Zbl0514.76019MR656000
  5. [5] C.J. Amick - J.F. Toland, On solitary water-waves of finite amplitude, Arch. Rational Mech. Anal., 76 (1981), pp. 9-95. Zbl0468.76025MR629699
  6. [6] C.J. Amick - J.F. Toland, On periodic water waves and their convergence to solitary waves in the long-wave limit, Philos. Trans. Roy. Soc. London Ser. A, 303 (1981), pp. 633-673. Zbl0482.76029MR647410
  7. [7] C.J. Amick - L.E. Fraenkel - J.F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), pp. 193-214. Zbl0495.76021MR666110
  8. [8] C.J. Amick - R.E.L. Turner, A global theory for internal solitary waves in a two-fluid system (to appear). Zbl0631.35029
  9. [9] A. Bongers - H.P. Heinz - T. Küpper, Existence and bifurcation theorems for nonlinear elliptic eigenvalue problems on unbounded domains, J. Differential Equations, 47 (1983), pp. 327-357. Zbl0506.35081MR692835
  10. [10] R. Chiapinelli - C.A. Stuart, Bifurcation when the linearized problem has no eigenvalues, J. Differential Equations, 30 (1978), pp. 296-307. Zbl0419.34010MR521855
  11. [11] C.A. Stuart, Bifurcation from the continuous spectrum in the L2-theory of elliptic equations in RN, Atti 3° S.A.F.A. (1978), Confer. Sem. Mat. Univ. Bari (1979), pp. 157-180. 
  12. [12] C.A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc., 95 (1982), pp. 169-192. Zbl0505.35010MR662670
  13. [13] J.F. Toland, Global bifurcation for Neumann problems without eigenvalues, J. Differential Equations, 44 (1982), pp. 82-110. Zbl0455.34015MR651688
  14. [14] J.F. Toland, Positive solutions of nonlinear elliptic equations: existence and nonexistence of solutions with radial symmetry in Lp(R N)Trans. A.M.S., 282 (1983), pp. 335-365. Zbl0549.35039MR728716
  15. [15] K. Kirchgässner - J. Scheurle, Bifurcation from the continuous spectrum and singular solutions, in Trends in applications of pure mathematics to mechanics, Vol. III, pp. 138-154, R. Knops, ed., London, Pitman, 1980. Zbl0507.34050MR714006
  16. [16] K. Krichgässner - J. Scheurle, Bifurcation of nonperiodic solutions of some semilinear equations in unbounded domains, in : Applications of nonlinear analysis in the physical sciences, Vol. VI, pp. 41-59, H. Amann, N. Bazely, K. Kirchgässner, eds., London, Pitman, 1981. Zbl0505.35008MR659689
  17. [17] C.A. Stuart, Bifurcation from the essential spectrum, in Equadiff 82, Springer Lecture Notes no. 1017, pp. 575-596, H. Knoblock, K. Schmitt, eds., Berlin, Springer-Verlag, 1983. Zbl0527.35010MR726615
  18. [18] C.A. Stuart, A variational approach to bifurcation in L p on an unbounded symmetrical domain, Math. Ann., 263 (1983), pp. 51-59. Zbl0513.35068MR697330
  19. [19] M. Esteban, Nonlinear elliptic problems in strip-like domains. Symmetry of positive vortex rings, Nonlinear Anal. T.M.A., 7 (4) (1983), pp. 365-380. Zbl0513.35035MR696736
  20. [20] C.J. Amick - J.F. Toland, Nonlinear elliptic eigenvalue problems on an infinite strip : global theory of bifurcation and asymptotic bifurcation, Math. Ann., 262 (1983), pp. 313-342. Zbl0489.35067MR692860
  21. [21] A.M. Ter-Krikorov, On internal waves in an inhomogeneous fluid, J. Appl. Math. Mech., 26 (1962), pp. 1617-1631. Zbl0127.17202MR152220
  22. [22] A.M. Ter-Krikorov, Théorie exacte des ondes longues stationnaires dans un liquide hétérogène, J. Mécanique, 2 (1963), pp. 351-376. MR160400
  23. [23] T.B. Benjamin, An exact theory of finite steady waves in continuously stratified fluids, Fluid Mechanics Research Institute, University of Essex, report no. 48. 
  24. [24] C.S. Yih, Dynamics of nonhomogeneous fluids, New York, MacMillan, 1965. Zbl0193.55205MR183194
  25. [25] T.B. Benjamin, Internal waves of finite amplitude and permanent form, J. Fluid Mech., 25 (1966), pp. 241-270. Zbl0145.23602
  26. [26] T.B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), pp. 559-592. Zbl0147.46502
  27. [27] T.B. Benjamin, A unified theory of conjugate flows, Philos. Trans. Roy. Soc. London Ser. A, 269 (1971), pp. 587-643. Zbl0226.76037MR446075
  28. [28] R.E. Davis - A. Acrivos, Solitary internal waves in deep water, J. Fluid Mech., 29 (1967), pp. 593-607. Zbl0147.46503
  29. [29] M. Yanowitch, Gravity waves in a heterogeneous incompressible fluid, Comm. Pure Appl. Math., 15 (1962), pp. 45-61. Zbl0117.21905MR165792
  30. [30] R.R. Long, Some aspects of the flow of stratified fluids, Part I : A theoretical investigations, Tellus, 5 (1953), pp. 42-57. MR57094
  31. [31] R.R. Long, Solitary waves in the one- and two-fluid systems, Tellus, 8 (1956), pp. 460-471. 
  32. [32] G.H. Keulegan, Characteristics of internal solitary waves, J. Res. Nat. Bur. Standards, 51 (1953), pp. 133-140. Zbl0052.21601
  33. [33] C.S. Yih, On the flow of a stratified fluid, Proc. U.S. Nat. Congr. Appl. Mech., 3rd (1958), pp. 857-861. MR108947
  34. [34] C.S. Yih, Exact solutions for steady two-dimensional flow of a stratified fluid, J. Fluid Mech., 9 (1960), pp. 161-174. Zbl0094.21204MR115460
  35. [35] A.S. Peter - J.J. Stokes, Solitary waves in liquids having nonconstant density, Comm. Pure Appl. Math., 8 (1960), pp. 115-164. Zbl0090.43301
  36. [36] C.J. Amick - J.F. Toland, The limiting form of internal waves, Proc. Roy. Soc. LondonA394 (1984), pp. 329-344. Zbl0553.76018MR763506
  37. [37] S. Agmon, The Lp approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), pp. 405-448. Zbl0093.10601MR125306
  38. [38] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), pp. 304-318. Zbl0222.31007MR333220
  39. [39] M.G. Krein - M.A. Rutman, Linear operators which leave a cone in Banach space invariant, Amer. Math. Soc. Transl. Ser.1, 10 (1950). MR38008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.