Bombieri's theorem in short intervals
A. Perelli; J. Pintz; S. Salerno
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)
- Volume: 11, Issue: 4, page 529-539
- ISSN: 0391-173X
Access Full Article
topHow to cite
topPerelli, A., Pintz, J., and Salerno, S.. "Bombieri's theorem in short intervals." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.4 (1984): 529-539. <http://eudml.org/doc/83945>.
@article{Perelli1984,
author = {Perelli, A., Pintz, J., Salerno, S.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {short intervals; Heath-Brown's identity; Bombieri's mean value theorem},
language = {eng},
number = {4},
pages = {529-539},
publisher = {Scuola normale superiore},
title = {Bombieri's theorem in short intervals},
url = {http://eudml.org/doc/83945},
volume = {11},
year = {1984},
}
TY - JOUR
AU - Perelli, A.
AU - Pintz, J.
AU - Salerno, S.
TI - Bombieri's theorem in short intervals
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 4
SP - 529
EP - 539
LA - eng
KW - short intervals; Heath-Brown's identity; Bombieri's mean value theorem
UR - http://eudml.org/doc/83945
ER -
References
top- [1] E. Bombieri, Le Grand Crible dans la Théorie Analytique des Nombres, Astérisque, no. 18 (1974). Zbl0292.10035MR891718
- [2] H. Davenport, Multiplicative Number Theory, II edition, Springer-Verlag, 1980. Zbl0453.10002MR606931
- [3] P.X. Gallagher, Bombieri's mean value theorem, Mathematika, 15 (1968), pp. 1-6. Zbl0174.08103MR237442
- [4] D.R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math., 34 (1982), pp. 1365-1377. Zbl0478.10024MR678676
- [5] D.R. Heath-Brown, Sieve identities and gaps between primes, Astérisque, no. 94 (1982), pp. 61-65. Zbl0502.10029
- [6] M.N. Huxley - H. Iwaniec, Bombieri's theorem in short intervals, Mathematika, 22 (1975), pp. 188-194. Zbl0317.10048MR389790
- [7] M. Jutila, A. statistical density theorem for L-functions with applications, Acta Arith., 16 (1969), pp. 207-216. Zbl0185.10901MR252336
- [8] A.F. Lavrik, An approximate functional equation for the Dirichlet L-functions, Trans. Moscow Math. Soc., 18 (1968), pp. 101-115. Zbl0195.33301MR236126
- [9] H.L. Montgomery, Topics in Multiplicative Number Theory, Springer L.N. no. 227 (1971). Zbl0216.03501MR337847
- [10] Y. Motohashi, On a mean value theorem for the remainder term in the prime number theorem for short arithmetical progressions, Proc. Japan Acad. Ser A Math. Sci., 47 (1971), pp. 653-657. Zbl0246.10027MR304329
- [11] K. Prachar, Primzahtverteitung, Springer-Verlag (1957). Zbl0080.25901MR87685
- [12] S.J. Ricci, Mean-values theorems for primes in short intervals, Proc. London Math. Soc., (3) 37 (1978), pp. 230-242. Zbl0399.10043MR507605
- [13] R.C. Vaughan, Mean value theorems in prime number theory, J. London Math. Soc., (2) 10 (1975), pp. 153-162. Zbl0314.10028MR376567
- [14] R.C. Vaughan, An elementary method in prime number theory, Acta Arith., 37 (1980), pp. 111-115. Zbl0448.10037MR598869
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.