Bombieri's theorem in short intervals

A. Perelli; J. Pintz; S. Salerno

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 4, page 529-539
  • ISSN: 0391-173X

How to cite

top

Perelli, A., Pintz, J., and Salerno, S.. "Bombieri's theorem in short intervals." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.4 (1984): 529-539. <http://eudml.org/doc/83945>.

@article{Perelli1984,
author = {Perelli, A., Pintz, J., Salerno, S.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {short intervals; Heath-Brown's identity; Bombieri's mean value theorem},
language = {eng},
number = {4},
pages = {529-539},
publisher = {Scuola normale superiore},
title = {Bombieri's theorem in short intervals},
url = {http://eudml.org/doc/83945},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Perelli, A.
AU - Pintz, J.
AU - Salerno, S.
TI - Bombieri's theorem in short intervals
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 4
SP - 529
EP - 539
LA - eng
KW - short intervals; Heath-Brown's identity; Bombieri's mean value theorem
UR - http://eudml.org/doc/83945
ER -

References

top
  1. [1] E. Bombieri, Le Grand Crible dans la Théorie Analytique des Nombres, Astérisque, no. 18 (1974). Zbl0292.10035MR891718
  2. [2] H. Davenport, Multiplicative Number Theory, II edition, Springer-Verlag, 1980. Zbl0453.10002MR606931
  3. [3] P.X. Gallagher, Bombieri's mean value theorem, Mathematika, 15 (1968), pp. 1-6. Zbl0174.08103MR237442
  4. [4] D.R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math., 34 (1982), pp. 1365-1377. Zbl0478.10024MR678676
  5. [5] D.R. Heath-Brown, Sieve identities and gaps between primes, Astérisque, no. 94 (1982), pp. 61-65. Zbl0502.10029
  6. [6] M.N. Huxley - H. Iwaniec, Bombieri's theorem in short intervals, Mathematika, 22 (1975), pp. 188-194. Zbl0317.10048MR389790
  7. [7] M. Jutila, A. statistical density theorem for L-functions with applications, Acta Arith., 16 (1969), pp. 207-216. Zbl0185.10901MR252336
  8. [8] A.F. Lavrik, An approximate functional equation for the Dirichlet L-functions, Trans. Moscow Math. Soc., 18 (1968), pp. 101-115. Zbl0195.33301MR236126
  9. [9] H.L. Montgomery, Topics in Multiplicative Number Theory, Springer L.N. no. 227 (1971). Zbl0216.03501MR337847
  10. [10] Y. Motohashi, On a mean value theorem for the remainder term in the prime number theorem for short arithmetical progressions, Proc. Japan Acad. Ser A Math. Sci., 47 (1971), pp. 653-657. Zbl0246.10027MR304329
  11. [11] K. Prachar, Primzahtverteitung, Springer-Verlag (1957). Zbl0080.25901MR87685
  12. [12] S.J. Ricci, Mean-values theorems for primes in short intervals, Proc. London Math. Soc., (3) 37 (1978), pp. 230-242. Zbl0399.10043MR507605
  13. [13] R.C. Vaughan, Mean value theorems in prime number theory, J. London Math. Soc., (2) 10 (1975), pp. 153-162. Zbl0314.10028MR376567
  14. [14] R.C. Vaughan, An elementary method in prime number theory, Acta Arith., 37 (1980), pp. 111-115. Zbl0448.10037MR598869

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.