On perturbed wave equations with time-dependent coefficients

Gustavo Perla Menzala

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 4, page 541-558
  • ISSN: 0391-173X

How to cite

top

Perla Menzala, Gustavo. "On perturbed wave equations with time-dependent coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.4 (1984): 541-558. <http://eudml.org/doc/83946>.

@article{PerlaMenzala1984,
author = {Perla Menzala, Gustavo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {total energy; perturbed wave equation; Huygens' princple; symmetric perturbations},
language = {eng},
number = {4},
pages = {541-558},
publisher = {Scuola normale superiore},
title = {On perturbed wave equations with time-dependent coefficients},
url = {http://eudml.org/doc/83946},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Perla Menzala, Gustavo
TI - On perturbed wave equations with time-dependent coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 4
SP - 541
EP - 558
LA - eng
KW - total energy; perturbed wave equation; Huygens' princple; symmetric perturbations
UR - http://eudml.org/doc/83946
ER -

References

top
  1. [1] C.O. Bloom - N.D. Kazarinoff, Energy decays locally even if total energy grows algebraically with time, J. Differential Equations, 16 (1974), pp. 352-372. Zbl0279.35054MR350215
  2. [2] J. Cooper - W.A. Strauss, Energy boundedness and decay of waves reflecting off a moving obstacle, Indiana Univ. Math. J., 25 (1976), pp. 671-690. Zbl0348.35059MR415093
  3. [3] R. Courant - D. Hilbert, Methods of Mathematical Physics, Vol. II, Interscience, New York (1962). Zbl0099.29504MR65391
  4. [4] O.A. Ladyzhenskaya, On the principle of limiting amplitude, Uspekhi Mat. Nauk (N.S.), 12 (1957), 3 (75), pp. 161-164. Zbl0078.27902MR90401
  5. [5] P.D. Lax - R. Phillips, Scattering Theory, Academic Press, New York (1967). Zbl0186.16301MR217440
  6. [6] R.B. Melrose, Singularities and energy decay in acoustical scattering, Duke Mathematical J., 46 (1) (1979), pp. 43-59. Zbl0415.35050MR523601
  7. [7] C. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math., 19 (1966), pp. 439-444. Zbl0161.08002MR204828
  8. [8] C. Morawetz - J.V. Ralston - W.A. Strauss, Decay of sotutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math., 30 (1977), pp. 447-508. Zbl0372.35008MR509770
  9. [9] G. Perla Menzala - T. Schonbek, Does Huygens' principle hold for small perturbations of the wave equation?, J. Diff. Equations54 (2), (1984) pp. 283-294. Zbl0502.35011MR757297
  10. [10] G. Perla Menzala, Classical solutions of perturbed wave equations in odd space dimensions do not necessarily propagate on spherical shells, Proc. Roy. Soc. Edynburgh Sect.96A (1984) pp. 337-344. Zbl0555.35072MR760782
  11. [11] W. Strauss, Dispersal of waves vanishing on the boundary of an exterior domain, Comm. Pure Appl. Math., 28 (1975), pp. 265-278. Zbl0297.35047MR367461
  12. [12] H. Tamura, On the decay of local energy for wave equations with time-dependent potential, J. Math. Soc. Japan, 33 (4) (1981), pp. 605-618. Zbl0463.35046MR630627
  13. [13] D. Thoe, On the exponential decay of solutions of the wave equation, J. Math, Anal. Appl., 16 (1966), pp. 333-346. Zbl0171.07301MR209656
  14. [14] E.C. Zachmanoglou, The decay of solutions of the initial boundary value problem for hyperbolic equations, J. Math. Anal. Appl., 13:(3) (1966), pp. 504-515. Zbl0135.31702MR188619

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.