On perturbed wave equations with time-dependent coefficients
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)
- Volume: 11, Issue: 4, page 541-558
- ISSN: 0391-173X
Access Full Article
topHow to cite
topPerla Menzala, Gustavo. "On perturbed wave equations with time-dependent coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.4 (1984): 541-558. <http://eudml.org/doc/83946>.
@article{PerlaMenzala1984,
author = {Perla Menzala, Gustavo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {total energy; perturbed wave equation; Huygens' princple; symmetric perturbations},
language = {eng},
number = {4},
pages = {541-558},
publisher = {Scuola normale superiore},
title = {On perturbed wave equations with time-dependent coefficients},
url = {http://eudml.org/doc/83946},
volume = {11},
year = {1984},
}
TY - JOUR
AU - Perla Menzala, Gustavo
TI - On perturbed wave equations with time-dependent coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 4
SP - 541
EP - 558
LA - eng
KW - total energy; perturbed wave equation; Huygens' princple; symmetric perturbations
UR - http://eudml.org/doc/83946
ER -
References
top- [1] C.O. Bloom - N.D. Kazarinoff, Energy decays locally even if total energy grows algebraically with time, J. Differential Equations, 16 (1974), pp. 352-372. Zbl0279.35054MR350215
- [2] J. Cooper - W.A. Strauss, Energy boundedness and decay of waves reflecting off a moving obstacle, Indiana Univ. Math. J., 25 (1976), pp. 671-690. Zbl0348.35059MR415093
- [3] R. Courant - D. Hilbert, Methods of Mathematical Physics, Vol. II, Interscience, New York (1962). Zbl0099.29504MR65391
- [4] O.A. Ladyzhenskaya, On the principle of limiting amplitude, Uspekhi Mat. Nauk (N.S.), 12 (1957), 3 (75), pp. 161-164. Zbl0078.27902MR90401
- [5] P.D. Lax - R. Phillips, Scattering Theory, Academic Press, New York (1967). Zbl0186.16301MR217440
- [6] R.B. Melrose, Singularities and energy decay in acoustical scattering, Duke Mathematical J., 46 (1) (1979), pp. 43-59. Zbl0415.35050MR523601
- [7] C. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math., 19 (1966), pp. 439-444. Zbl0161.08002MR204828
- [8] C. Morawetz - J.V. Ralston - W.A. Strauss, Decay of sotutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math., 30 (1977), pp. 447-508. Zbl0372.35008MR509770
- [9] G. Perla Menzala - T. Schonbek, Does Huygens' principle hold for small perturbations of the wave equation?, J. Diff. Equations54 (2), (1984) pp. 283-294. Zbl0502.35011MR757297
- [10] G. Perla Menzala, Classical solutions of perturbed wave equations in odd space dimensions do not necessarily propagate on spherical shells, Proc. Roy. Soc. Edynburgh Sect.96A (1984) pp. 337-344. Zbl0555.35072MR760782
- [11] W. Strauss, Dispersal of waves vanishing on the boundary of an exterior domain, Comm. Pure Appl. Math., 28 (1975), pp. 265-278. Zbl0297.35047MR367461
- [12] H. Tamura, On the decay of local energy for wave equations with time-dependent potential, J. Math. Soc. Japan, 33 (4) (1981), pp. 605-618. Zbl0463.35046MR630627
- [13] D. Thoe, On the exponential decay of solutions of the wave equation, J. Math, Anal. Appl., 16 (1966), pp. 333-346. Zbl0171.07301MR209656
- [14] E.C. Zachmanoglou, The decay of solutions of the initial boundary value problem for hyperbolic equations, J. Math. Anal. Appl., 13:(3) (1966), pp. 504-515. Zbl0135.31702MR188619
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.