Existence des opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps

Alain Bachelot; Vesselin Petkov

Annales de l'I.H.P. Physique théorique (1987)

  • Volume: 47, Issue: 4, page 383-428
  • ISSN: 0246-0211

How to cite

top

Bachelot, Alain, and Petkov, Vesselin. "Existence des opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps." Annales de l'I.H.P. Physique théorique 47.4 (1987): 383-428. <http://eudml.org/doc/76385>.

@article{Bachelot1987,
author = {Bachelot, Alain, Petkov, Vesselin},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {time periodic potential; existence; scattering operator; decay of the local energy; local evolution operator; microlocal analysis; propagation of singularities; spectrum; Dirac system},
language = {fre},
number = {4},
pages = {383-428},
publisher = {Gauthier-Villars},
title = {Existence des opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps},
url = {http://eudml.org/doc/76385},
volume = {47},
year = {1987},
}

TY - JOUR
AU - Bachelot, Alain
AU - Petkov, Vesselin
TI - Existence des opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 47
IS - 4
SP - 383
EP - 428
LA - fre
KW - time periodic potential; existence; scattering operator; decay of the local energy; local evolution operator; microlocal analysis; propagation of singularities; spectrum; Dirac system
UR - http://eudml.org/doc/76385
ER -

References

top
  1. [1] A. Bachelot et V. Petkov, Existence de l'opérateur de diffusion pour l'équation des ondes avec un potentiel périodique en temps ; C. R. Acad. Sc. Paris, t. 303, série I, n° 14, 1986, p. 671-673. Zbl0611.35067MR870693
  2. [2] A. Bachelot et V. Petkov, Existence de l'opérateur de diffusion pour l'équation des ondes avec un potentiel périodique en temps ; à paraître in « Nonlinear partial differential equations and their applications, Collège de France Seminar ». H. Brezis et J. L. Lions Eds. Research Notes in Math., Pitman, Boston, Londres, Melbourne. Zbl0673.35062
  3. [3] C. Bloom et N. Kazarinoff, Energy decays locally even if total energy grows algebrically with time. J. Diff. Equations, t. 16, 1974, p. 352-372. Zbl0279.35054MR350215
  4. [4] J. Copper, G. Perla-Menzala, W. Strauss, On the scattering frequencies of time dependent potentials. Preprint. Zbl0626.35074
  5. [5] J. Copper et W. Strauss, Scattering of waves by periodically moving bodies. J. Funct. Anal., t. 47, 1982, p. 180-229. Zbl0494.35073MR664336
  6. [6] J. Copper et W. Strauss, Abstract scattering theory for time periodic systems with applications to electromagnetism. Indiana Univ. Math., t. 34, 1985, p. 33-83. Zbl0582.47011MR773393
  7. [7] N. Dunford et J. Schwartz, Linear operators. Wiley Interscience, New York, 1971. Zbl0243.47001MR412888
  8. [8] J.A. Ferreira et G. Perla-Menzala, Time dependent approach to the inverse scattering problem for wave equation with time dependent coefficients; Preprint. Zbl0651.35070
  9. [9] V. Georgiev, Existence and completeness of the wave operators for dissipative hyperbolic systems. J. Operator Theory, t. 14, 1985, p. 291-310. Zbl0589.47010MR808294
  10. [10] V. Georgiev et V. Petkov, Théorème de type RAGE pour des opérateurs à puissances bornées. C. R. Acad. Sc. Paris, t. 303, série I, 1986, p. 605-608. Zbl0603.47001MR867547
  11. [11] J.C. Guillot et G. Schmidt, Spectral and scattering theory for Dirac operators. Arch. Rat. Mech. Anal., t. 55, 1974, p. 193-206. Zbl0297.47008MR355374
  12. [12] J.S. Howland, Stationary scattering theory for time dependent hamiltonians. Math. Ann., t. 207, 1974, p. 315-335. Zbl0261.35067MR346559
  13. [13] P.D. Lax et R. Phillips, Scattering theory. Academic Press, New York, 1967. Zbl0186.16301
  14. [14] R.B. Melrose, Singularities and energy decay in acoustical scattering. Duke Math. J., t. 46, 1979, p. 43-59. Zbl0415.35050MR523601
  15. [15] R.B. Melrose, The trace of the wave group; in Contemporary Mathematics, vol. 27. Microlocal Analysis, A. M. S., 1985, p. 127-167. Zbl0547.35095MR741046
  16. [16] G. Perla-Menzala, On perturbed wave equations with time dependent coefficients. Ann. Scuola Norm.Pisa, t. 11, 1984, p. 541-558. Zbl0592.35079MR808423
  17. [17] G. Perla-Menzala, Sur l'opérateur de diffusion pour l'équation des ondes avec des potentiels dépendant du temps ; C. R. Acad. Sci. Paris, série I, t. 300, 1985, p. 621-624. Zbl0601.35090MR795672
  18. [18] G. Perla-Menzala, Scattering properties of wave equations with time dependent potentials; Preprint. Zbl0598.35086
  19. [19] V. Petkov, Scattering theory for mixed problems in the exteriour of moving obstacles;Intern. Conf. on Hyperbolic Equ. and Related Topics, Padova, 1985, à paraître. Zbl0732.35065
  20. [20] V. Petkov, Scattering theory for hyperbolic operators ; Notas de Curso n° 24, Departamento de Matematica, Universitade Federal de Pernambuco, Recife, 1987. MR912265
  21. [21] G. Popov et Zv. Rangelov, On the exponential growth of the local energy for periodically moving obstacles; Preprint. 
  22. [22] R. Phillips, Scattering theory for the wave equation with a short range perturbation. Indiana Univ. Math. J., t. 31, 1982, p. 609-639. Zbl0465.35073MR667785
  23. [23] W. Strauss, The existence of the scattering operator for moving obstacles. J. Funct. Anal., t. 31, 1979, p. 255-262. Zbl0457.35049MR525956
  24. [24] M.E. Taylor, Pseudodifferential operators ;Princeton University Press, 1981. Zbl0453.47026MR618463

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.