Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces

A. Conte; J. P. Murre

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)

  • Volume: 12, Issue: 1, page 43-80
  • ISSN: 0391-173X

How to cite

top

Conte, A., and Murre, J. P.. "Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.1 (1985): 43-80. <http://eudml.org/doc/83952>.

@article{Conte1985,
author = {Conte, A., Murre, J. P.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Three-dimensional varieties whose general hyperplane sections are Enriques surfaces; K3 surface; Fano variety},
language = {eng},
number = {1},
pages = {43-80},
publisher = {Scuola normale superiore},
title = {Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces},
url = {http://eudml.org/doc/83952},
volume = {12},
year = {1985},
}

TY - JOUR
AU - Conte, A.
AU - Murre, J. P.
TI - Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 1
SP - 43
EP - 80
LA - eng
KW - Three-dimensional varieties whose general hyperplane sections are Enriques surfaces; K3 surface; Fano variety
UR - http://eudml.org/doc/83952
ER -

References

top
  1. [1] M. Artin, Som numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math., 84 (1962), pp. 485-496. Zbl0105.14404MR146182
  2. [2] A. Beauville, Surfaces algébriques complexes, Astérisque, 54, Paris, 1978. Zbl0394.14014MR485887
  3. [3] S. Bloch - J.P. Murre, On the Chow group of certain types of Fano threefolds, Compositio Math., 39 (1979), pp. 47-105. Zbl0426.14018MR539001
  4. [4] F. Conforto, Le superficie razionali, Zanichelli, Bologna, 1939. Zbl0021.05306JFM65.0714.03
  5. [5] A. Conte - J.P. Murre, Three-dimensional algebraic varieties whose hyperplane sections are Enriques surfaces, Institut Mittag-Leffler, Report no. 10, 1981. Zbl0612.14041
  6. [6] A. Conte - A. Verra, Varietà aventi come sezioni iperpiane superficie di Enriques, to appear. 
  7. [7] F. Cossec, Projective models of Enriques surfaces, Math. Ann., 265 (1983), pp. 283-334. Zbl0501.14021MR721398
  8. [8] P. Du Val, On rational surfaces whose prime sections are canonical curves, Proc. London Math. Soc., 35 (1933), pp. 1-13. Zbl0006.22101JFM59.0649.01
  9. [9] D. Epema, Surfaces with canonical curves as hyperplane sections, Indagationes Math., 45 [1983), pp. 173-84. Zbl0532.14018MR705424
  10. [10] G. Fano, Nuove ricerche sulle congruenze di rette del 30 ordine, Mem. Accad. Sci. Torino, 50 (1901), pp. 1-79. JFM33.0685.02
  11. [11] G. Fano, Sulle varietà algebriche a tre dimensioni le cui sezioni iperpiane sono superficie di genere zero e bigenere uno, Memorie società dei XL, 24 (1938), pp. 41-66. Zbl0022.07702JFM65.1403.02
  12. [12] L. Godeaux, Sur les variétés algébriques à trois dimensions dont les sections hyperplanes sont des surfaces de genre zéro et de bigenre un, Bull. Acad. Belgique, Cl. des Sci., 14 (1933), pp. 134-140. Zbl0007.42201JFM59.0652.03
  13. [13] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
  14. [14] V.A. Iskovskih, Fano threefolds I and II, Izv. Akad. Nauk SSSR, 41 (1977), pp. 516-562, resp. 42 (1978), pp. 506-549 (and english translation). Zbl0407.14016MR463151
  15. [15] V.A. Iskovskih, Anticanonical models of three-dimensional algebraic varieties, in: Itogi Nauki i Tekniki, Sov. Pr. Mat., 12 (1979), pp. 59-157; engl. transl. in J. Soviet Math., 13 (1980), pp. 745-814. Zbl0428.14016MR537685
  16. [16] M. Letizia, Sistemi lineari completi su superficie di Enriques, Ann. di Mat., 126 (1980), pp. 267-283. Zbl0469.14003MR612363
  17. [17] T. Matsusaka, On the theorem of Castelnuovo-Enriques, Natur. Sc. Rep., Ochanomizo Univ., 4 (1953), pp. 164-171. Zbl0056.14601MR63691
  18. [18] D. Mumford, Topology of normal singularities and a criterion for simplicity, Publ. IHES, 9 (1961), pp. 229-246. Zbl0108.16801
  19. [19] D. Mumford, Pathologies III, Amer. J. Math., 89 (1967), pp. 94-104. Zbl0146.42403MR217091
  20. [20] L. Picco-Botta - A. Verra, The nonrationality of the Enriques threefold, Compositio Math., 48 (1983), pp. 167-184. Zbl0508.14032MR700002
  21. [21] M. Reid, Hyperelliptic linear systems on a K3-surface, J. London Math. Soc., 13 (1976), pp. 427-437. Zbl0338.14009MR435082
  22. [22] B. Saint-Donat, Projective models of K3-surfaces, Amer. J. Math., 96 (1972), pp. 602-639. Zbl0301.14011MR364263
  23. [23] C. Segre, Étude des différentes surfaces du 4e ordre à conique double ou cuspidale (générale ou décomposée) considérées comme des projections de l'intersection de deux variétés quadratiques de l'espace à quatre dimensions, Math. Ann., 29 (1884), pp. 313-444. MR1510288JFM16.0596.01
  24. [24] A.N. Tjurin, Five lectures on three-dimensional varieties, Russian Math. Surveys, 30 (1975), pp. 51-105. Zbl0263.14012
  25. [25] A. Weil, Foundations of Algebraic Geometry, Am. Math. Soc. Colloq. Publ., 29, revised and enlarged edition, Providence, 1962. Zbl0168.18701MR144898
  26. [26] A. Weil, Sur les critères d'équivalence en géométrie algébrique, Math. Ann., 128 (1954), pp. 95-127. Zbl0057.13002MR65219
  27. [27] O. Zariski, Algebraic Surfaces, 2nd suppl. ed., Ergebnisse, 61, Springer-Verlag. Heidelberg, 1971. Zbl0219.14020MR469915
  28. [28] O. Zariski, An introduction to the theory of algebraic surfaces, Lecture Notes in Math., 83, Springer, Berlin, 1969. Zbl0177.49001MR263819
  29. [29] O. Zariski, Complete linear systems on normal varieties and a generalization of a lemma of Enriques-Severi, Ann. of Math., 55 (1962), pp. 552-592. Zbl0047.14803MR48857

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.