Harmonic maps into a hemisphere
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)
- Volume: 12, Issue: 1, page 81-90
- ISSN: 0391-173X
Access Full Article
topHow to cite
topGiaquinta, M., and Souček, J.. "Harmonic maps into a hemisphere." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.1 (1985): 81-90. <http://eudml.org/doc/83953>.
@article{Giaquinta1985,
author = {Giaquinta, M., Souček, J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {harmonic maps; calculus of variation; regularity},
language = {eng},
number = {1},
pages = {81-90},
publisher = {Scuola normale superiore},
title = {Harmonic maps into a hemisphere},
url = {http://eudml.org/doc/83953},
volume = {12},
year = {1985},
}
TY - JOUR
AU - Giaquinta, M.
AU - Souček, J.
TI - Harmonic maps into a hemisphere
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 1
SP - 81
EP - 90
LA - eng
KW - harmonic maps; calculus of variation; regularity
UR - http://eudml.org/doc/83953
ER -
References
top- [1] A. Baldes, Stability properties of the equator map from a ball into ann ellipsoid, preprint. Zbl0513.58021
- [2] J. Eells, Regularity of certain harmonic maps, Proc. Durham Symp. on Global Riem. Geo., July 1982, to appear. Zbl0616.58012MR757215
- [3] J. Eells - L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., 40 (1978), pp. 1-68. Zbl0401.58003MR495450
- [4] J. Eells - J. Lemaire, Selected topics in harmonic maps, N.S.F. Conf. Board Math. Sci., to appear. Zbl0515.58011MR703510
- [5] J. Eells - J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), pp. 109-160. Zbl0122.40102MR164306
- [6] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Math. Studies, no. 105, Princeton Univ. Press. Zbl0516.49003MR717034
- [7] M. Giaquinta - E. Giusti, On the regularity of the minima of variational integrals, Acta Math., 448 (1982), pp. 31-46. Zbl0494.49031MR666107
- [8] M. Giaquinta - E. Giusti, The singular set of the minima of certain quadratic functionals, Ann. Sc. Norm. Sup. Pisa, to apear. Zbl0543.49018
- [9] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, New York, to appear. Zbl0545.49018MR775682
- [10] S. Hildebrandt, Liouville theorems for harmonic mappings and an approach to Bernstein theorem, Annals of Math. Studies, no. 102, Princeton (1982), pp. 107-132. Zbl0505.58014MR645732
- [11] S. Hildebrandt - H. Kaul - K.-O. Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math., 438 (1977), pp. 1-16. Zbl0356.53015MR433502
- [12] W. Jäger - H. Kaul, Uniqueness and stability of harmonic maps and their Sacobi fields, Manuscripta Math., 28 (1979), pp. 269-291. Zbl0413.31006MR535705
- [13] W. Jäger - H. Kaul, Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, reprint. Zbl0516.35032
- [14] J. Jost, Existence proofs for harmonic mappings with the help of a maximum principle, Math. Z., to appear. Zbl0526.58015MR719489
- [15] J. Jost - M. Meier, Boundary regularity for minima of certain quadratic functionals, Math. Ann., 262 (1983), pp. 549-561. Zbl0488.49004MR696525
- [16] M. Meier, Liouville theorems, partial regularity, and Hölder continuity of weak solutions to quasilinear elliptic systems, preprint. Zbl0556.35047MR742430
- [17] R. Schoen - K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geo., 47 (1982), pp. 307-335. Zbl0521.58021MR664498
- [18] R. Schoen - K. Uhlenbeck, Boundary regularity and miscellaneous results on harmonic maps, J. Diff. Geom., to appear.
- [19] J. Simons, Minimal varieties in riemannian manifolds, Annals of Math., 88 (1968), pp. 62-105. Zbl0181.49702MR233295
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.