The absolute Galois group of a pseudo real closed field

Dan Haran; Moshe Jarden

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)

  • Volume: 12, Issue: 3, page 449-489
  • ISSN: 0391-173X

How to cite

top

Haran, Dan, and Jarden, Moshe. "The absolute Galois group of a pseudo real closed field." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.3 (1985): 449-489. <http://eudml.org/doc/83963>.

@article{Haran1985,
author = {Haran, Dan, Jarden, Moshe},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {absolute Galois group; prc-fields; profinite group; real projective; involution; Artin-Schreier structures; projectivity},
language = {eng},
number = {3},
pages = {449-489},
publisher = {Scuola normale superiore},
title = {The absolute Galois group of a pseudo real closed field},
url = {http://eudml.org/doc/83963},
volume = {12},
year = {1985},
}

TY - JOUR
AU - Haran, Dan
AU - Jarden, Moshe
TI - The absolute Galois group of a pseudo real closed field
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 3
SP - 449
EP - 489
LA - eng
KW - absolute Galois group; prc-fields; profinite group; real projective; involution; Artin-Schreier structures; projectivity
UR - http://eudml.org/doc/83963
ER -

References

top
  1. [1] J. Ax, The elementary theory of finite fields, Ann. of Math., 88 (1968), pp. 239-271. Zbl0195.05701MR229613
  2. [2] Bredon, Introduction to compact transformation groups, Academic Press, London, 1972. Zbl0246.57017MR413144
  3. [3] T. Craven, The Boolean space of orderings of a field, Amer. Math. Soc. Transl., 209 (1975), pp. 225-235. Zbl0315.12106MR379448
  4. [4] L. Van den Dries, Model theory of fields, Ph. D. Thesis, Utrecht, 1978. 
  5. [5] R. Elman - T.Y. Lam - A.R. Wadsworth, Orderings under field extensions, Journal für die reine und angewandte Math., 306 (1975), pp. 7-27. Zbl0398.12019MR524644
  6. [6] R. Engelking, Outline of general topology, North-Holland, Amsterdam, PWN, 1968. Zbl0157.53001MR230273
  7. [7] Yu L. Ershov, Completely real extensions of fields, Dokl. Akad. Nauk SSSR, 263 (1982), pp. 1047-1049. Zbl0514.03019MR652153
  8. [8] W.-D. Geyer, Galois groups of intersections of local fields, Israel J. Math., 30 (1978), pp. 383-396. Zbl0383.12014MR506378
  9. [9] K. Grunberg, Projective profinite groups, J. London Math. Soc., 42 (1967), pp. 155-165. Zbl0178.02703MR209362
  10. [10] D. Haran - A. Lubotzky, Embedding covers and the theory of Frobenius fields, Israel J. Math., 41 (1982), pp. 181-202. Zbl0502.20013MR657855
  11. [11] E. Hewitt - A.K. Ross, Abstract Harmonic Analysis I, Springer-Verlag, Berlin1963. Zbl0115.10603
  12. [12] A.V. Jakovlev, The Galois group of the algebraic closure of a local field, Math. USSR-Izv.2 (1968), pp. 1231-1269. Zbl0194.35401MR236155
  13. [13] U. Jannsen - K. Winberg, Die Struktur der absoluten Galois gruppe p-adischer Zahlkörper, Inventiones mathematicae, 70 (1982), pp. 71-98. Zbl0534.12010MR679774
  14. [14] M. Jarden, Elementary statements over large algebraic fields, Amer. Math. Soc. Transl., 164 (1972), pp. 67-91. Zbl0235.12104MR302651
  15. [15] M. Jarden, Algebraic extensions of finite corank of Hilbertian fields, Israel J. Math., 18 (1974), pp. 279-307. Zbl0293.12101MR376617
  16. [16] M. Jarden, The elementary theory of large e-fold ordered fields, Acta Math.149 (1982), pp. 239-240. Zbl0513.12020MR688350
  17. [17] M. Jarden, On the model companion of the theory of e-fold ordered fields, Acta Math., 150 (1983), pp. 243-253. Zbl0518.12018MR709142
  18. [18] S. Lang, Algebra, Addison-Wesley, 1974. MR197234
  19. [19] S. Lang, Algebraic geometry, Interscience Publishers, New York, 1964. 
  20. [20] A. Lubotzky - L. v. d. Dries, Subgroups of free profinite groups and large subfields of Q, Israel J. Math., 39 (1981), pp. 25-45. Zbl0485.20021MR617288
  21. [21] A. Prestel, Lectures on formally real fields, Monografias de Matemática22, IMPA, Rio de Janeiro, 1975. Zbl0548.12010
  22. [22] A. Prestel, Pseudo real closed fields, in : Set theory and model theory, pp. 127-156, Lecture notes in Math., 782, Springer, Berlin, 1981. Zbl0466.12018MR645909
  23. [23] L. Ribes, Introduction to profinite groups and Galois cohomology, Queen's University, Kingston, 1970. Zbl0221.12013MR260875
  24. [24] W.C. Waterhaus, Profinite groups are Galois groups, Proc. Amer. Math. Soc., 42 (1974), pp. 639-640. Zbl0281.20031MR325587
  25. [25] K. Winberg, Der Eindeutigkeitssatz für Demuškinformationen,Inventiones Mathematicae70 (1982), pp. 99-113. Zbl0534.12011MR679775

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.