Algebraic realization of p -adically projective groups

Moshe Jarden

Compositio Mathematica (1991)

  • Volume: 79, Issue: 1, page 21-62
  • ISSN: 0010-437X

How to cite


Jarden, Moshe. "Algebraic realization of $p$-adically projective groups." Compositio Mathematica 79.1 (1991): 21-62. <>.

author = {Jarden, Moshe},
journal = {Compositio Mathematica},
keywords = {absolute Galois groups of pseudo -adically closed fields; -adically projective groups; -adically projective profinite group; algebraic PpC field},
language = {eng},
number = {1},
pages = {21-62},
publisher = {Kluwer Academic Publishers},
title = {Algebraic realization of $p$-adically projective groups},
url = {},
volume = {79},
year = {1991},

AU - Jarden, Moshe
TI - Algebraic realization of $p$-adically projective groups
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 79
IS - 1
SP - 21
EP - 62
LA - eng
KW - absolute Galois groups of pseudo -adically closed fields; -adically projective groups; -adically projective profinite group; algebraic PpC field
UR -
ER -


  1. [A] J. Ax, The elementary theory of finite fields, Ann. Math.88 (1968), 239-271. Zbl0195.05701MR229613
  2. [BNW] E. Binz, J. Neukirch and G.H. Wenzel, A subgroup theorem for free products of profinite groups, J. Algebra19 (1971), 104-109. Zbl0232.20052MR280598
  3. [BS] J.L. Bell and A.B. Slomson, Models and Ultraproducts, North-Holland/American Elsevier, Amsterdam/New York, 1974. Zbl0179.31402
  4. [D] L P.D. v.d. Dries, Model theory of fields, Thesis, Utrecht, 1978. 
  5. [DR] L P.D. v.d. Dries and P. Ribenboim, An application of Tarski's principle to absolute Galois groups of function fields, Queen's Mathematical Preprint No. 1984-8. 
  6. [EJ] I. Efrat and M. Jarden, Free pseudo p-adically closed field of finite corank, J. Algebra133 (1990), 132-150. Zbl0727.12005MR1063387
  7. [F] M.D. Fried, Irreducibility results for separated variables equations, J. Pure and Applied Algebra48 (1987), 9-22. Zbl0646.13006MR915986
  8. [FJ] M.D. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik. III. 11, Springer, Heidelberg, 1986. Zbl0625.12001MR868860
  9. [G] W.-D. Geyer, Galois groups of intersections of local fields, Israel J. Math.30 (1978), 382-396. Zbl0383.12014MR506378
  10. [GR] D. Gildenhuys and L. Ribes, A Kurosh subgroup theorem for free pro-C-products of pro-C-groups, Transactions of AMS186 (1973), 309-329. Zbl0282.20027MR340433
  11. [Gr] C. Grob, Die Entscheidbarkeit der Theorie der maximalen pseudo p-adisch abgeschlossenen Körper, Dissertation, Konstanz, 1988. Zbl0786.12006
  12. [H] D. Haran, On closed subgroups of free products of profinite groups, Proc. Lon. Math. Soc. (3) 55 (1987), 266-298. Zbl0666.20015MR896222
  13. [HJ1] D. Haran and M. Jarden, The absolute Galois group of a pseudo real closed field, Annali della Scuola Normale Superiore - Pisa, Serie IV, 12 (1985), 449-489. Zbl0595.12013MR837257
  14. [HJ2] D. Haran and M. Jarden, Real free groups and the absolute Galois group of R(t), J. Pure Appl. Algebra37 (1985), 155-165. Zbl0577.12019MR796405
  15. [HJ3] D. Haran and M. Jarden, The absolute Galois group of a pseudo real closed algebraic field, Pac. J. Math.123 (1986), 55-69. Zbl0595.12014MR834138
  16. [HJ4] D. Haran and M. Jarden, The absolute Galois group of a pseudo p-adically closed field, J. für die reine und angewandte Math.383 (1988), 147-206. Zbl0652.12010MR921990
  17. [HL] D. Haran and A. Lubotzky, Maximal abelian subgroups of free profinite groups, Mathematical proceeding of the Cambridge Philosophical Society97 (1985), 51-55. Zbl0562.20013MR764491
  18. [HP] B. Heinemann and A. Prestel, Fields regularly closed with respect to finitely many valuations and orderings, Can. Math. Soc. Conf. Proc.4 (1984), 297-336. Zbl0555.12008MR776459
  19. [HR] W. Herfort and L. Ribes, Torsion elements and centralizers in free products of profinite groups, J. für die reine und angewandte Math.358 (1985), 155-161. Zbl0549.20017MR797680
  20. [J] M. Jarden, The algebraic nature of the elementary theory of PRC fields, manuscripta mathematicae60 (1988), 463-475. Zbl0675.12016MR933475
  21. [JW] U. Jannsen und K. Wingberg, Die Struktur der absoluten Galoisgruppe p-adischer Zahlkörper, Inventiones mathematicae70 (1982), 70-98. Zbl0534.12010MR679774
  22. [KN] W. Krull and J. Neukirch, Die Struktur der absoluten Galoisgruppe über dem Körper R(t), Math. Ann.193 (1971), 197-209. Zbl0236.12104MR289471
  23. [L] S. Lang, Introduction to algebraic geometry, Interscience Publishers, New York, 1958. Zbl0095.15301MR100591
  24. [N1] J. Neukirch, Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper, In. Math.6 (1969), 296-314. Zbl0192.40102MR244211
  25. [N2] J. Neukirch, Freie Produkte pro-enlicher Gruppen und ihre Kohomologie, Arch. der. Math. 22 (1971), 337-357. Zbl0254.20023MR347992
  26. [P] A. Prestel, Pseudo real closed fields, Set theory and Model theory, Springer's Lecture Notes872 (1981), 127-156, Springer. Zbl0466.12018MR645909
  27. [Po] F. Pop, Galoissche Kennzeichnung p-adisch abgeshlossener Körper, Dissertation, Heidelberg, 1987. Zbl0638.12007MR965062
  28. [PR] A. Prestel and P. Roquette, Formally p-adic fields, Lecture Notes in Mathematics1050, Springer, Berlin, 1984. Zbl0523.12016MR738076
  29. [PZ] A. Prestel and M. Ziegler, Model theoretic methods in the theory of topological fields, J. für die reine und angewandte Math.299/300 (1978), 318-341. Zbl0367.12014MR491852
  30. [R] L. Ribes, Introduction to profinite groups and Galois Cohomology, Queen's papers in Pure and Applied Maths 24, Queen's University, Kingston, 1970. Zbl0221.12013MR260875
  31. [Ri] P. Ribenboim, Théorie des valuations, Les Presses de l'Université de Montréal, Montréal, 1964. Zbl0139.26201MR249425
  32. [S] J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Maths. 5, Springer, Heidelberg, 1965. Zbl0136.02801MR201444
  33. [Sp] B. Schuppar, Elementare Aususagen zur Arithmetik und Galoistheorie von Funktionenkörpen, J. für die reine und angewandte Math. 313 (1980), 59-71. Zbl0423.12015MR552463

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.