Hölder continuity and thin obstacle problems for vector valued functions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1986)
- Volume: 13, Issue: 2, page 281-297
- ISSN: 0391-173X
Access Full Article
topHow to cite
topKarlsson, Thomas. "Hölder continuity and thin obstacle problems for vector valued functions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 13.2 (1986): 281-297. <http://eudml.org/doc/83981>.
@article{Karlsson1986,
author = {Karlsson, Thomas},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {281-297},
publisher = {Scuola normale superiore},
title = {Hölder continuity and thin obstacle problems for vector valued functions},
url = {http://eudml.org/doc/83981},
volume = {13},
year = {1986},
}
TY - JOUR
AU - Karlsson, Thomas
TI - Hölder continuity and thin obstacle problems for vector valued functions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1986
PB - Scuola normale superiore
VL - 13
IS - 2
SP - 281
EP - 297
LA - eng
UR - http://eudml.org/doc/83981
ER -
References
top- [1] H. Beirão Da Veiga - F. Conti, Equazioni ellittiche non lineari con ostacoli sottili, Ann. Scuola Norm. Super. Pisa, Cl. Sci.III, 26 (1972), pp. 533-562. Zbl0259.35034MR364862
- [2] L. Caffarelli, Further regularity for the Signorini problem, Comm. Pure Appl. Math., 4 (1979), pp. 1067-1075. Zbl0427.35019MR542512
- [3] J. Frehse, On Signorini's problem and variational problems with thin obstacles, Ann. Scuola Norm. Super.Pisa Cl. Sci., 4 (1977), pp. 343-362. Zbl0353.49020MR509085
- [4] J. Frehse - U. Mosco, Sur la continuité ponctuelle des solutions locales f aibles du problème d'obstacte, C. R. Acad. Sci. Paris, 295 (1982), pp. 571-574. Zbl0506.49004MR685027
- [5] M. Giaquinta - G. Modica, Regolarità Lipschitziana per la soluzione di alcuni problemi di minimo con vincolo, Ann. Mat. Pura Appl., 106 (1975), pp. 95-117. Zbl0325.49009MR454852
- [6] S. Hildebrandt - K.-O. Widman, Variational inequalities for vector valued functions, J. Reine Angew. Math., 309 (1979), pp. 191-220. Zbl0408.49012MR542048
- [7] T. Karlsson, Regularity results for solutions of some obstacle problems, Dissertation No. 92, Dept. Math., Linköping University (1983).
- [8] T. Karlsson, Wiener's criterion and obstacle problems for vector valued functions, Arkiv för Mat., 23 (1985), pp. 315-325. Zbl0602.49007MR827348
- [9] D. Kinderlehrer, Variational inequalities with lower dimensional obstacles, Israel J. Math., 10 (1971), pp. 339-348. Zbl0263.49008MR304999
- [10] D. Kinderlehrer, The smoothness of the solution of the boundary obstacle problem, J. Math. Pures Appl., 60 (1981), pp. 193-212. Zbl0459.35092MR620584
- [11] D. Kinderlehrer, Remarks about Signorini's problem in linear elasticity, Ann. Scuola Norm. Super. Pisa Cl. Sci., 4 (1981), pp. 605-645. Zbl0482.73017MR656002
- [12] H. Lewy, On a refinement of Evans' law in potential theory, Atti Accad. Naz. Lincei (1970), pp. 1-9. Zbl0217.39002MR274786
- [13] J Nečas, On regularity of solutions to nonlinear variational inequalities for second-order elliptic systems, Rend. Mat., 8 (1975), pp. 481-498. Zbl0321.35029MR382827
- [14] K.-O. Widman, The singularity of the Green function for nonuniformly elliptic partial differential equations with discontinuous coefficients, Uppsala University Report (1970).
- [15] K.-O. Widman, Inequalities for the Green function of second order elliptic operators, Report 8-1972, Dept. Math., Linköping University (1972).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.