On Signorini's problem and variational problems with thin obstacles

Jens Frehse

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1977)

  • Volume: 4, Issue: 2, page 343-362
  • ISSN: 0391-173X

How to cite

top

Frehse, Jens. "On Signorini's problem and variational problems with thin obstacles." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.2 (1977): 343-362. <http://eudml.org/doc/83754>.

@article{Frehse1977,
author = {Frehse, Jens},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {343-362},
publisher = {Scuola normale superiore},
title = {On Signorini's problem and variational problems with thin obstacles},
url = {http://eudml.org/doc/83754},
volume = {4},
year = {1977},
}

TY - JOUR
AU - Frehse, Jens
TI - On Signorini's problem and variational problems with thin obstacles
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1977
PB - Scuola normale superiore
VL - 4
IS - 2
SP - 343
EP - 362
LA - eng
UR - http://eudml.org/doc/83754
ER -

References

top
  1. [1] H. Beirao Da Veiga, Sur la regularité des solutions de l'équation div A(x, u, Vu) = = B(x, u, Vu) avec des conditions aux timites unitaterales et mêlées, Thèse Paris, 1971. Zbl0278.35023
  2. [2] H. Beirao Da Veiga, Sulla hölderianità delle soluzioni di alcune disequazioni variazionali con condizioni unilaterali al bordo, Ann. Mat. pura appl., IV Ser., 38 (1969), pp. 73-112. Zbl0201.13401MR259706
  3. [3] H. Beirao Da Veiga - F. Conti, Equazioni ellittiche non lineari con ostacoli sottili ..., Ann. Scuola Norm. Sup. Pisa, Sci. fis. mat., III Ser., 26 (1972), pp. 533-562. Zbl0259.35034MR364862
  4. [4] H. Brezis, Problèmes unilateraux, J. Math. pures et appl., 51 (1972), pp. 1-168. Zbl0237.35001MR428137
  5. [5] J. Frehse, Two dimensional variational problems with thin obstacles, Math. Z., 143 (1975), pp. 279-288. Zbl0295.49003MR380550
  6. [6] J. Frehse - R. Rannacher, Eine L1-Fehlerabschätzung für diskrete Grundlösungen in der Methode der finiten Elemente, Bonner Math. Schriften, 1976, Tagungsband : Finite Elemente. Zbl0359.65093MR445778
  7. [7] G. Fichera, Boundary value problems of elasticity with unilateral constraints, from: Flügge (ed.), Handbuch der Physik, VI a/2, pp. 391-423, Berlin - Heidelberg - New York, Springer, 1972. 
  8. [8] M. Giaquinta - G. Modica, Regolarità lipschitziana per le soluzioni di alcuni problemi di minimo con vincolo, to appear in Ann. Mat. pura appl., IV Ser. Zbl0325.49009
  9. [9] M. Giaquinta - G. Modica, Part. II of [8], to appear. 
  10. [10] E. Giusti, Superfici minime cartesiane con ostacoli discontinui, Arch. rat. Mech. Analysis, 40 (1971), pp. 251-267. Zbl0214.11201MR275251
  11. [11] E. Giusti, Minimal surfaces with obstacles. In Geometric measure theory and minimal surfaces (C.I.M.E.), pp. 121-153. (Editor: E. Bombieri), Roma: Edizioni Cremonese, 1973. Zbl0268.49048MR407701
  12. [12] E. Giusti, Non parametric minimal surfaces with discontinuous and thin obstacles, Arch. rat. Mech. Analysis, 49 (1972), pp. 41-56. Zbl0257.49015MR346640
  13. [13] D. Kinderlehrer, Variational inequalities with lower dimensional obstacles, Israel J. Math., 10 (1971), pp. 339-348. Zbl0263.49008MR304999
  14. [14] O.A. Ladyzhenskaya - N.N. Ural'tseva, Linear and quasilinear equations of elliptic type. New York: Academic Press, 1968. Zbl0164.13002MR244627
  15. [15] H. Lewy, On a refinement of Evans law in potential theory, Atti Accad. Naz. Lincei, VIII Ser., Rend., Cl. Sci. fis. mat. natur., 48 (1970), pp. 1-9. Zbl0217.39002MR274786
  16. [16] H. Lewy, On the coincidence set in variational inequalities, J. diff. Geometry6 (1972), pp. 497-501. Zbl0255.31002MR320343
  17. [17] H. Lewy - G. Stampacchia, On the regularity of the solution of a variational inequality, Commun. pure appl. Math., 22 (1969), pp. 153-188. Zbl0167.11501MR247551
  18. [18] C.B. MorreyJr., Multiple integrals in the calculus of variations, Berlin - Heidelberg - New York: Springer, 1966. Zbl0142.38701MR202511
  19. [19] J.C.C. Nitsche, Variational problems with inequalities as boundary conditions or how to fashion a cheap hat for Giacometti's brother, Arch. rat. Mech. Analysis, 41 (1971), pp. 241-253. Zbl0209.41601
  20. [20] G. Stampacchia, Le problème de Dirichlet pour équations eltiptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, 15 (1965), pp. 189-258. Zbl0151.15401MR192177
  21. [21] K.O. Widman, The singularity of the green function for non-uniformly elliptic partial differential equations with discontinuous coefficients, Technical report, Uppsala University, 1970. 
  22. [22] K.O. Widman, Hõlder continuity of solutions of elliptic systems, Manuscripta math., 5 (1971), pp. 299-308. Zbl0223.35044MR296484

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.