On the coincidence set in biharmonic variational inequalities with thin obstacles

Bernhard Schild

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1986)

  • Volume: 13, Issue: 4, page 559-616
  • ISSN: 0391-173X

How to cite

top

Schild, Bernhard. "On the coincidence set in biharmonic variational inequalities with thin obstacles." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 13.4 (1986): 559-616. <http://eudml.org/doc/83991>.

@article{Schild1986,
author = {Schild, Bernhard},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {biharmonic; thin obstacle; coincidence set},
language = {eng},
number = {4},
pages = {559-616},
publisher = {Scuola normale superiore},
title = {On the coincidence set in biharmonic variational inequalities with thin obstacles},
url = {http://eudml.org/doc/83991},
volume = {13},
year = {1986},
}

TY - JOUR
AU - Schild, Bernhard
TI - On the coincidence set in biharmonic variational inequalities with thin obstacles
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1986
PB - Scuola normale superiore
VL - 13
IS - 4
SP - 559
EP - 616
LA - eng
KW - biharmonic; thin obstacle; coincidence set
UR - http://eudml.org/doc/83991
ER -

References

top
  1. [1] I. Athanasopoulos, Stability of the coincidence set for the Signorini problem,. Indiana Univ. Math. J., 30 (1981), pp. 235-247. Zbl0438.35014MR604281
  2. [2] A. Friedman, Variational principtes and free-boundary problems, New York,. Wiley (1982). Zbl0564.49002MR679313
  3. [3] D. Gilbarg - N.S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin-Heidelberg -New York (1977). Zbl0361.35003MR473443
  4. [4] N.S. Landkof, Foundations of modern potential theory, Springer, Berlin-Heidelberg-New York (1972). Zbl0253.31001MR350027
  5. [5] H. Lewy, On the coincidence set in variational inequalities, J. Differential Geom., 6 (1972), pp. 497-501. Zbl0255.31002MR320343
  6. [6] B. Schild, A regularity result for polyharmonic variational inequalities with thin obstacles, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 9 (1984), pp. 87-122. Zbl0554.49003MR752581
  7. [7] B. Schild, Über die Regularität der Lösungen polyharmonischer Variationsungleichungen mit ein- und zweiseitigen dünnen Hindernissen, Bonner Math. Schriften Nr.154, Bonn (1984). Zbl0561.73013MR757000
  8. [8] B.W. Schulze and G. Wildenhain, Methoden der Potentialtheorie für elliptische Differentialgleichungen beliebiger Ordnung, Birkhäuser, Basel-Stuttgart (1977). Zbl0366.35002MR499624
  9. [9] E.M. Stein - G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press (1971). Zbl0232.42007MR304972

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.