On the coincidence set in biharmonic variational inequalities with thin obstacles
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1986)
- Volume: 13, Issue: 4, page 559-616
- ISSN: 0391-173X
Access Full Article
topHow to cite
topSchild, Bernhard. "On the coincidence set in biharmonic variational inequalities with thin obstacles." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 13.4 (1986): 559-616. <http://eudml.org/doc/83991>.
@article{Schild1986,
author = {Schild, Bernhard},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {biharmonic; thin obstacle; coincidence set},
language = {eng},
number = {4},
pages = {559-616},
publisher = {Scuola normale superiore},
title = {On the coincidence set in biharmonic variational inequalities with thin obstacles},
url = {http://eudml.org/doc/83991},
volume = {13},
year = {1986},
}
TY - JOUR
AU - Schild, Bernhard
TI - On the coincidence set in biharmonic variational inequalities with thin obstacles
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1986
PB - Scuola normale superiore
VL - 13
IS - 4
SP - 559
EP - 616
LA - eng
KW - biharmonic; thin obstacle; coincidence set
UR - http://eudml.org/doc/83991
ER -
References
top- [1] I. Athanasopoulos, Stability of the coincidence set for the Signorini problem,. Indiana Univ. Math. J., 30 (1981), pp. 235-247. Zbl0438.35014MR604281
- [2] A. Friedman, Variational principtes and free-boundary problems, New York,. Wiley (1982). Zbl0564.49002MR679313
- [3] D. Gilbarg - N.S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin-Heidelberg -New York (1977). Zbl0361.35003MR473443
- [4] N.S. Landkof, Foundations of modern potential theory, Springer, Berlin-Heidelberg-New York (1972). Zbl0253.31001MR350027
- [5] H. Lewy, On the coincidence set in variational inequalities, J. Differential Geom., 6 (1972), pp. 497-501. Zbl0255.31002MR320343
- [6] B. Schild, A regularity result for polyharmonic variational inequalities with thin obstacles, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 9 (1984), pp. 87-122. Zbl0554.49003MR752581
- [7] B. Schild, Über die Regularität der Lösungen polyharmonischer Variationsungleichungen mit ein- und zweiseitigen dünnen Hindernissen, Bonner Math. Schriften Nr.154, Bonn (1984). Zbl0561.73013MR757000
- [8] B.W. Schulze and G. Wildenhain, Methoden der Potentialtheorie für elliptische Differentialgleichungen beliebiger Ordnung, Birkhäuser, Basel-Stuttgart (1977). Zbl0366.35002MR499624
- [9] E.M. Stein - G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press (1971). Zbl0232.42007MR304972
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.