Comparison principles and Liouville theorems for prescribed mean curvature equations in unbounded domains

Jenn-Fang Hwang

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)

  • Volume: 15, Issue: 3, page 341-355
  • ISSN: 0391-173X

How to cite

top

Hwang, Jenn-Fang. "Comparison principles and Liouville theorems for prescribed mean curvature equations in unbounded domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.3 (1988): 341-355. <http://eudml.org/doc/84033>.

@article{Hwang1988,
author = {Hwang, Jenn-Fang},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {comparison principles; Liouville theorems; prescribed mean curvature equations},
language = {eng},
number = {3},
pages = {341-355},
publisher = {Scuola normale superiore},
title = {Comparison principles and Liouville theorems for prescribed mean curvature equations in unbounded domains},
url = {http://eudml.org/doc/84033},
volume = {15},
year = {1988},
}

TY - JOUR
AU - Hwang, Jenn-Fang
TI - Comparison principles and Liouville theorems for prescribed mean curvature equations in unbounded domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 3
SP - 341
EP - 355
LA - eng
KW - comparison principles; Liouville theorems; prescribed mean curvature equations
UR - http://eudml.org/doc/84033
ER -

References

top
  1. [1] S.Y. Cheng - S.T. Yau, Differential equations on Riemann manifolds and their geometric applications. Comm. Pure. Appl. Math., XXVIII (1975), pp. 333-354. Zbl0312.53031MR385749
  2. [2] P. Concus - R. Finn, On capillary free surfaces in the absence of gravity. Acta Math.132 (1974), pp. 177-198. Zbl0382.76003MR670441
  3. [3] P. Concus - R. Finn, On capillary free surfaces in a gravitational field. Acta Math.132 (1974), pp. 207-223. Zbl0382.76005MR670443
  4. [4] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. Zbl0361.35003MR473443
  5. [5] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston-Basel- Stuttgart, 1984. Zbl0545.49018MR775682
  6. [6] M. Meier, Liouville theorems for nonlinear elliptic equations and systems, Manuscripta Math.29 (1979), pp. 207-228. Zbl0426.35034MR545042
  7. [7] M. Meier, Liouville theorems for nondiagonal elliptic systems in arbitrary dimensions, Math. Z.176 (1981), pp. 123-133. Zbl0454.35034MR606175
  8. [8] J.C.C. Nitsche, On new results in the theory of minimal surfaces, Bull. Amer. Math. Soc., 71 (1965), pp. 195-270. Zbl0135.21701MR173993
  9. [9] J.C.C. Nitsche, Vorlesungen über Minimalfläschen, Springer-Verlag, Berlin-Heidelberg -New York, 1975. Zbl0319.53003MR448224
  10. [10] R. Osserman, A Survey of Minimal Surfaces, Van Nostrand- Reinhold. New York, 1969. Zbl0209.52901MR256278
  11. [11] L.A. Peletier - J. Serrin, Gradient bounds and Liouville theorems for quasilinear elliptic equations. Annali Scuola Norm. Sup. Pisa, IV, 5, (1978), pp. 65-104. Zbl0383.35025MR481493
  12. [12] M.H. Protter - H.F. Weinberger, Maximum Principles in Differential Equations. Englewood N.J. Cliffs, Prentice-Hall, 1967. Zbl0153.13602MR219861
  13. [13] D. Sigel, Height estimates for capillary surfaces. Pacific J. Math.88, (1980), pp. 471-515. Zbl0411.35043MR607989
  14. [14] L.F. Tam, On the uniqueness of capillary surfaces without gravity over an infinite strip, Indiana Univ. Math. J., 36 (1987), pp. 79-89. Zbl0678.49037MR876992

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.