The Weinstein conjecture in cotangent bundles and related results
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)
- Volume: 15, Issue: 3, page 411-445
- ISSN: 0391-173X
Access Full Article
topHow to cite
topHofer, H., and Viterbo, C.. "The Weinstein conjecture in cotangent bundles and related results." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.3 (1988): 411-445. <http://eudml.org/doc/84035>.
@article{Hofer1988,
author = {Hofer, H., Viterbo, C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {energy surface; periodic orbits; Weinstein conjecture},
language = {eng},
number = {3},
pages = {411-445},
publisher = {Scuola normale superiore},
title = {The Weinstein conjecture in cotangent bundles and related results},
url = {http://eudml.org/doc/84035},
volume = {15},
year = {1988},
}
TY - JOUR
AU - Hofer, H.
AU - Viterbo, C.
TI - The Weinstein conjecture in cotangent bundles and related results
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 3
SP - 411
EP - 445
LA - eng
KW - energy surface; periodic orbits; Weinstein conjecture
UR - http://eudml.org/doc/84035
ER -
References
top- [1] R. Abraham - J. Marsden, Foundation of Mechanics, Benjamin/Cummings2nd ed., 1978. Zbl0393.70001
- [2] J.C. Alexander - M. Reeken, On the topological structure of the set of generalized solutions of the catenary problem, Proc. Roy. Soc. Edin. (to appear) Zbl0568.73063MR768354
- [3] H. Amann - E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian equations, Manuscripta Math. 32 (1980), pp. 149-189. Zbl0443.70019MR592715
- [4] V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, TAMS274 (1982), pp. 533-572. Zbl0504.58014MR675067
- [5] V. Benci - P. Rabinowitz, Critical point theorems for indefinite functionals, Inv. Math., 52 (1982), pp. 241-273. Zbl0465.49006MR537061
- [6] F. Clarke, Periodic Solutions of Hamiltonian inclusions, J. Diff. Eq.40 (1981), pp. 1-6. Zbl0461.34030MR614215
- [7] A. Dold, The fixed point transfer of fibre preserving maps, Math. Z.148 (1976), pp. 215-244. Zbl0329.55007MR433440
- [8] H. Elliasson, Geometry of manifold of maps, J. Diff. Geometry1 (1967), pp. 165-194.
- [9] H. Gluck - W. Ziller, Existence of periodic motions for conservative systems, Seminar on minimal submanifolds, Princeton University Press, 1982. Zbl0546.58040MR795229
- [10] H. Hofer, Critical point theory for Hamiltonian systems on cotangent bundles (in preparation).
- [11] H. Hofer, Lagrangian embeddings and critical point theory, Ann. Inst. Henri Poincare, Analyse nonlineaire Vol. 2 No. 6, 1985, pp. 407-462. Zbl0591.58009MR831040
- [12] H. Hofer - E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Inv. Math.90 (1987), pp. 1-9. Zbl0631.58022MR906578
- [13] W. Klingenberg, Riemannian Geometry, de Gruyter studies in Mathematics 1, Walter de Gruyter, Berlin, New York, 1982. Zbl0495.53036MR666697
- [14] W. Klingenberg, Lectures on closed geodesics, Grundlehren der Math. Wiss.230 (1978), SpringerBerlin-Heidelberg- New York. Zbl0397.58018MR478069
- [15] S. Lang, Differentiable manifolds, Reading, Mass: Addison-Wesley1972. Zbl0239.58001
- [16] W. Massey, Homology and Cohomology theory, Marcel Dekker, New York-Basel. Zbl0377.55004MR488016
- [17] R. Palais, Foundations of global nonlinear analysis, W.A. Benjamin Inc., New York, 1968. Zbl0164.11102MR248880
- [18] P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure and Appl. Math.31 (1978), pp. 157-184. Zbl0358.70014MR467823
- [19] P. Rabinowitz, Periodic solutions of a Hamiltonian system on a prescribed energysurface, JDE33 (1979), pp. 336-352. Zbl0424.34043MR543703
- [20] P. Rabinowitz, On a theorem of Hofer and Zehnder, in "Periodic solutions of Hamiltonian Systems and Related Topics", Ed. P. Rabinowitz, A. Ambrosetti, I. Ekeland and E. Zehnder, Nato ASI Series Vol. 209, pp. 245-254. Zbl0635.58014MR920626
- [21] H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z.51 (1948), pp. 197-216. Zbl0030.22103MR25693
- [22] D. Sullivan, Differential forms and the topology of manifolds, Manifolds Tokyo 1973, ed. A. Hattori, Tokyo, University of Tokyo Press, 1975. Zbl0319.58005MR370611
- [23] M. Vigue-Poirrier - D. Sullivan, The Homology of the closed geodesic problem, J. Diff. Geometry11 (1976), pp. 633-644. Zbl0361.53058MR455028
- [24] E. Spanier, Algebraic Topology, McGraw Hill. Zbl0145.43303MR210112
- [25] C. Viterbo, A proof of the Weinstein Conjecture in R 2n, Analyse nonlineaire4 (1987), pp. 337-356. Zbl0631.58013MR917741
- [26] C. Viterbo, Une théorie de Morse pour les systemes hamiltoniens étoilés, in preparation. Zbl0608.58037
- [27] A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math.108 (1978), pp. 507-518. Zbl0403.58001MR512430
- [28] A. Weinstein, On the hypotheses of Rabinowitz' periodic orbit theorems, J. Diff. Eq.33 (1979), pp. 353-358. Zbl0388.58020MR543704
- [29] R. Bott, Morse theory old and new, BAMS Vol. 7 No. 2 (1982), pp. 331-358. Zbl0505.58001MR663786
- [30] Adams, Sobolevspaces, Academic Press, New York, 1975. Zbl0314.46030
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.