The Weinstein conjecture in cotangent bundles and related results

H. Hofer; C. Viterbo

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)

  • Volume: 15, Issue: 3, page 411-445
  • ISSN: 0391-173X

How to cite

top

Hofer, H., and Viterbo, C.. "The Weinstein conjecture in cotangent bundles and related results." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.3 (1988): 411-445. <http://eudml.org/doc/84035>.

@article{Hofer1988,
author = {Hofer, H., Viterbo, C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {energy surface; periodic orbits; Weinstein conjecture},
language = {eng},
number = {3},
pages = {411-445},
publisher = {Scuola normale superiore},
title = {The Weinstein conjecture in cotangent bundles and related results},
url = {http://eudml.org/doc/84035},
volume = {15},
year = {1988},
}

TY - JOUR
AU - Hofer, H.
AU - Viterbo, C.
TI - The Weinstein conjecture in cotangent bundles and related results
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 3
SP - 411
EP - 445
LA - eng
KW - energy surface; periodic orbits; Weinstein conjecture
UR - http://eudml.org/doc/84035
ER -

References

top
  1. [1] R. Abraham - J. Marsden, Foundation of Mechanics, Benjamin/Cummings2nd ed., 1978. Zbl0393.70001
  2. [2] J.C. Alexander - M. Reeken, On the topological structure of the set of generalized solutions of the catenary problem, Proc. Roy. Soc. Edin. (to appear) Zbl0568.73063MR768354
  3. [3] H. Amann - E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian equations, Manuscripta Math. 32 (1980), pp. 149-189. Zbl0443.70019MR592715
  4. [4] V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, TAMS274 (1982), pp. 533-572. Zbl0504.58014MR675067
  5. [5] V. Benci - P. Rabinowitz, Critical point theorems for indefinite functionals, Inv. Math., 52 (1982), pp. 241-273. Zbl0465.49006MR537061
  6. [6] F. Clarke, Periodic Solutions of Hamiltonian inclusions, J. Diff. Eq.40 (1981), pp. 1-6. Zbl0461.34030MR614215
  7. [7] A. Dold, The fixed point transfer of fibre preserving maps, Math. Z.148 (1976), pp. 215-244. Zbl0329.55007MR433440
  8. [8] H. Elliasson, Geometry of manifold of maps, J. Diff. Geometry1 (1967), pp. 165-194. 
  9. [9] H. Gluck - W. Ziller, Existence of periodic motions for conservative systems, Seminar on minimal submanifolds, Princeton University Press, 1982. Zbl0546.58040MR795229
  10. [10] H. Hofer, Critical point theory for Hamiltonian systems on cotangent bundles (in preparation). 
  11. [11] H. Hofer, Lagrangian embeddings and critical point theory, Ann. Inst. Henri Poincare, Analyse nonlineaire Vol. 2 No. 6, 1985, pp. 407-462. Zbl0591.58009MR831040
  12. [12] H. Hofer - E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Inv. Math.90 (1987), pp. 1-9. Zbl0631.58022MR906578
  13. [13] W. Klingenberg, Riemannian Geometry, de Gruyter studies in Mathematics 1, Walter de Gruyter, Berlin, New York, 1982. Zbl0495.53036MR666697
  14. [14] W. Klingenberg, Lectures on closed geodesics, Grundlehren der Math. Wiss.230 (1978), SpringerBerlin-Heidelberg- New York. Zbl0397.58018MR478069
  15. [15] S. Lang, Differentiable manifolds, Reading, Mass: Addison-Wesley1972. Zbl0239.58001
  16. [16] W. Massey, Homology and Cohomology theory, Marcel Dekker, New York-Basel. Zbl0377.55004MR488016
  17. [17] R. Palais, Foundations of global nonlinear analysis, W.A. Benjamin Inc., New York, 1968. Zbl0164.11102MR248880
  18. [18] P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure and Appl. Math.31 (1978), pp. 157-184. Zbl0358.70014MR467823
  19. [19] P. Rabinowitz, Periodic solutions of a Hamiltonian system on a prescribed energysurface, JDE33 (1979), pp. 336-352. Zbl0424.34043MR543703
  20. [20] P. Rabinowitz, On a theorem of Hofer and Zehnder, in "Periodic solutions of Hamiltonian Systems and Related Topics", Ed. P. Rabinowitz, A. Ambrosetti, I. Ekeland and E. Zehnder, Nato ASI Series Vol. 209, pp. 245-254. Zbl0635.58014MR920626
  21. [21] H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z.51 (1948), pp. 197-216. Zbl0030.22103MR25693
  22. [22] D. Sullivan, Differential forms and the topology of manifolds, Manifolds Tokyo 1973, ed. A. Hattori, Tokyo, University of Tokyo Press, 1975. Zbl0319.58005MR370611
  23. [23] M. Vigue-Poirrier - D. Sullivan, The Homology of the closed geodesic problem, J. Diff. Geometry11 (1976), pp. 633-644. Zbl0361.53058MR455028
  24. [24] E. Spanier, Algebraic Topology, McGraw Hill. Zbl0145.43303MR210112
  25. [25] C. Viterbo, A proof of the Weinstein Conjecture in R 2n, Analyse nonlineaire4 (1987), pp. 337-356. Zbl0631.58013MR917741
  26. [26] C. Viterbo, Une théorie de Morse pour les systemes hamiltoniens étoilés, in preparation. Zbl0608.58037
  27. [27] A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math.108 (1978), pp. 507-518. Zbl0403.58001MR512430
  28. [28] A. Weinstein, On the hypotheses of Rabinowitz' periodic orbit theorems, J. Diff. Eq.33 (1979), pp. 353-358. Zbl0388.58020MR543704
  29. [29] R. Bott, Morse theory old and new, BAMS Vol. 7 No. 2 (1982), pp. 331-358. Zbl0505.58001MR663786
  30. [30] Adams, Sobolevspaces, Academic Press, New York, 1975. Zbl0314.46030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.