Classes de Gevrey non isotropes et application à l'interpolation

Jacques Chaumat; Anne-Marie Chollet

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)

  • Volume: 15, Issue: 4, page 615-676
  • ISSN: 0391-173X

How to cite

top

Chaumat, Jacques, and Chollet, Anne-Marie. "Classes de Gevrey non isotropes et application à l'interpolation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.4 (1988): 615-676. <http://eudml.org/doc/84046>.

@article{Chaumat1988,
author = {Chaumat, Jacques, Chollet, Anne-Marie},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {pseudoconvexity; boundary interpolation; nonisotropic Gevrey classes},
language = {fre},
number = {4},
pages = {615-676},
publisher = {Scuola normale superiore},
title = {Classes de Gevrey non isotropes et application à l'interpolation},
url = {http://eudml.org/doc/84046},
volume = {15},
year = {1988},
}

TY - JOUR
AU - Chaumat, Jacques
AU - Chollet, Anne-Marie
TI - Classes de Gevrey non isotropes et application à l'interpolation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 4
SP - 615
EP - 676
LA - fre
KW - pseudoconvexity; boundary interpolation; nonisotropic Gevrey classes
UR - http://eudml.org/doc/84046
ER -

References

top
  1. [1] H. Alexander - B.A. Taylor - D.L. Williams, The interpolating sets for A∞, J. Math. Anal. Appl.36 n° 1 (1971), 556-566. Zbl0228.46051
  2. [2] J. Bruna, An extension theorem of Whitney type for non-quasianalytic classes of functions, J. London Math. Soc. (2) 22 (1980), 495-505. Zbl0419.26010MR596328
  3. [3] J. Bruna - J. Ma Ortega, Interpolation by holomorphic functions smooth to the boundary in the Unit ball of Cn, Math. Ann.274 (1986), 527-575. Zbl0585.32018MR848501
  4. [4] H. Cartan, Calcul différentiel, Hermann-Paris (1967). Zbl0156.36102MR223194
  5. [5] J. Chaumat - A.M. Chollet, Ensembles de zéros et d'interpolation à la frontière de domaines strictement pseudoconvexes, Ark. Mat.24 (1986), 27-57. Zbl0601.32016MR852825
  6. [6] J. Chaumat - A.M. Chollet, Propriété de divisions par des fonctions de A∞ (D), Bull. Soc. Math. France114 (1986), 153-174. Zbl0603.32011
  7. [7] J. Chaumat - A.M. Chollet, Classes de Gevrey non-isotropes et application à l'interpolation, C.R. Acad. Sc. Paris304 n° 17 (1987), 531-533. Zbl0616.32017MR892882
  8. [8] R.R. Coifman - G. Weiss, Analyse harmonique non commutative sur certains espaces homogènes, Springer-Verlag (1971).. Zbl0224.43006MR499948
  9. [9] M. Derridj - D. Tartakov, Sur la régularité locale des solutions du problème de Neumann pour ∂, Lecture Notes in Math. 578, Séminaire Pierre Lelong (1975-76), 207-216. Zbl0358.35056
  10. [10] E.M. Dyn'kin, Pseudoanalytic extension of smooth functions. The Uniform Scale, Amer. Math. Soc. Transl. (2) 115 (1980), 33-58. Zbl0478.30039
  11. [11] E.M. Dyn'kin - S.V. Hruscev, Interpolation by analytic functions smooth up to the boundary, J. Soviet. Math.14 (1980), 1066-1077. Zbl0442.30035
  12. [12] G.B. Folland - E.M. Stein, Hardy spaces on Homogeneous groups, Mathematical NotesPrinceton University Press, (1982). Zbl0508.42025MR657581
  13. [13] G.M. Henkin - J. Leiterer, Theory of functions on complex Manifolds, Monographs in MathematicsBirkhaüser (1984). Zbl0573.32001MR795028
  14. [14] O. Liess - L. Rodino, Inhomogeneous Gevrey classes and related pseudodifferential operators, Bollettino U.M.I. Analisi Funzionale e Applicazioni Série VI vol. III (1984), 233-323. Zbl0557.35131MR749292
  15. [15] J. Michel, Communication personelle, Wuppertal, (1986). 
  16. [16] E.M. Stein, Singular integrals and estimates for the Cauchy Riemann Equations, Bull. Amer. Math. Soc.79 (1973), 440-445. Zbl0257.35040MR315302
  17. [17] M.S. Baouendi - C. Goulaouic, Régularité analytique et itérés d'opérateurs elliptiques dégénérés, applications. J. Funct. Analysis9 (1972), 208-248. Zbl0243.35044MR298471

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.