Interpolation Gevrey dans les domaines de type fini de 2

Vincent Thilliez

Banach Center Publications (1995)

  • Volume: 31, Issue: 1, page 359-365
  • ISSN: 0137-6934

How to cite

top

Thilliez, Vincent. "Interpolation Gevrey dans les domaines de type fini de $ℂ^2$." Banach Center Publications 31.1 (1995): 359-365. <http://eudml.org/doc/262878>.

@article{Thilliez1995,
author = {Thilliez, Vincent},
journal = {Banach Center Publications},
keywords = {Gevrey interpolation; finite type domain},
language = {fre},
number = {1},
pages = {359-365},
title = {Interpolation Gevrey dans les domaines de type fini de $ℂ^2$},
url = {http://eudml.org/doc/262878},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Thilliez, Vincent
TI - Interpolation Gevrey dans les domaines de type fini de $ℂ^2$
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 359
EP - 365
LA - fre
KW - Gevrey interpolation; finite type domain
UR - http://eudml.org/doc/262878
ER -

References

top
  1. [Bl] T. Bloom, C peak functions for pseudoconvex domains of strict type, Duke Math. J. 45 (1978), 133-147. 
  2. [BO] J. Bruna and J. M. Ortega, Interpolation by holomorphic functions smooth to the boundary in the unit ball of n , Math. Ann. 274 (1986), 527-575. Zbl0585.32018
  3. [Ca] D. Catlin, Estimates of invariant metrics on weakly pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429-466. Zbl0661.32030
  4. [CC1] J. Chaumat et A.-M. Chollet, Ensemble de zéros et d'interpolation à la frontière de domaines strictement pseudoconvexes, Ark. Mat. 24 (1985), 27-57. Zbl0601.32016
  5. [CC2] J. Chaumat et A.-M. Chollet, Classes de Gevrey non isotropes et application à l'interpolation, Ann. Scuola Norm. Sup. Pisa 15 (1988), 615-676. Zbl0689.32009
  6. [CC3] J. Chaumat et A.-M. Chollet, Noyaux pour résoudre l’équation ∂̅ dans des classes ultradifférentiables sur des compacts irréguliers de n , Proc. Mittag-Leffler Inst. 1987/1988, Math. Notes 38, Princeton Univ. Press, Princeton, 1993. 
  7. [CC4] J. Chaumat et A.-M. Chollet, Dimension de Hausdorff des ensembles de zéros et d’interpolation pour A ( D ) , Trans. Amer. Math. Soc. 299 (1987), 95-114. 
  8. [Ch] A.-M. Chollet, Zéros dans les classes de Gevrey de type analytique, Bull. Sci. Math. 96 (1972), 65-82. Zbl0231.30003
  9. [GrSt] P. C. Greiner and E. M. Stein, Estimates for the ∂̅-Neumann Problem, Princeton Univ. Press, 1977. 
  10. [NSW] A. Nagel, E. M. Stein and S. Wainger, Boundary behavior of functions holomorphic in domains of finite type, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 6596-6599. Zbl0517.32002
  11. [St] E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440-445. Zbl0257.35040
  12. [T1] V. Thilliez, Classes de Gevrey non isotropes dans les domaines de type fini de 2 , J. Analyse Math. 60 (1993), 259-305. 
  13. [T2] V. Thilliez, Interpolation Gevrey dans les domaines de type fini de 2 , Math. Z. 212 (1993), 555-580. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.