Surfaces of minimal area enclosing a given body in 3

Giovanni Mancini; Roberta Musina

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)

  • Volume: 16, Issue: 3, page 331-354
  • ISSN: 0391-173X

How to cite

top

Mancini, Giovanni, and Musina, Roberta. "Surfaces of minimal area enclosing a given body in $\mathbb {R}^3$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.3 (1989): 331-354. <http://eudml.org/doc/84056>.

@article{Mancini1989,
author = {Mancini, Giovanni, Musina, Roberta},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Jordan curve; minimal surface},
language = {eng},
number = {3},
pages = {331-354},
publisher = {Scuola normale superiore},
title = {Surfaces of minimal area enclosing a given body in $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/84056},
volume = {16},
year = {1989},
}

TY - JOUR
AU - Mancini, Giovanni
AU - Musina, Roberta
TI - Surfaces of minimal area enclosing a given body in $\mathbb {R}^3$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 3
SP - 331
EP - 354
LA - eng
KW - Jordan curve; minimal surface
UR - http://eudml.org/doc/84056
ER -

References

top
  1. [1] H. Brezis - J.M. Coron, Large solutions for harmonic maps in two dimensions, Comm. Math. Phys.92 (1983), pp. 203-215. Zbl0532.58006MR728866
  2. [2] H. Brezis - J.M. Coron, Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Appl. Math.37 (1984), pp. 149-187. Zbl0537.49022MR733715
  3. [3] H. Brezis - J.M. Coron, Convergence of solutions of H-systems, or how to blow up bubbles, Arch. Rational Mech. Anal.89 (1985), pp. 21-56. Zbl0584.49024MR784102
  4. [4] H. Brezis - J.M. Coron - E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys.107 (1986), pp. 649-705. Zbl0608.58016MR868739
  5. [5] R. Courant, Dirichlet's Principle, conformal mapping and minimal surfaces, Interscience, New York, 1950. Zbl0040.34603MR36317
  6. [6] E. De Giorgi, Problemi di superfici minime con ostacoli: forma non cartesiana, Boll. U.M.I.8 (1973), pp. 80-88. Zbl0289.49042MR328751
  7. [7] F. Duzaar, Variational inequalities and harmonic mappings, J. Reine Angewandte Math.374 (1987), pp. 39-60. Zbl0597.58006MR876220
  8. [8] S. Hildebrandt, Boundary behaviour of minimal surfaces, Arc. Rat. Mech. Anal.35 (1969), pp. 47-82. Zbl0183.39402MR248650
  9. [9] S. Hildebrandt, On the regularity of solutions of two-dimensional variational problems with obstructions, Comm. Pure Appl. Math.25 (1972), pp. 479-496. Zbl0239.49024MR305178
  10. [10] L. Lemaire, Applications harmoniques de surfaces Riemanniennes, J. Diff. Geometry13 (1978), pp. 51-78. Zbl0388.58003MR520601
  11. [11] P.L. Lions, The concentration-compactness principle in the Calculus of Variations: the limit case, Rev. Mat. Iberoamericana1 (1985), pp. 145-201 vol. 1 and pp. 45-121 vol. 2. Zbl0704.49005MR850686
  12. [12] M. Miranda, Frontiere minimali con ostacoli, Ann. Univ. Ferrara, Sez. VII, Sc. Mat.16 (1971), pp. 29-37. Zbl0266.49036MR301617
  13. [13] C.B. Morrey, The problem of Plateau in a Riemannian manifold, Ann. of Math.49 (1948), pp. 807-851. Zbl0033.39601MR27137
  14. [14] R. Musina, Ph.D. Thesis, in preparation. 
  15. [15] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute, New York. Zbl0286.47037MR488102
  16. [16] J.C.C. Nitsche, Vorlesungen über Minimalflächen, Springer, Berlin1975. Zbl0319.53003MR448224
  17. [17] J. Sacks - K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Annals of Math.113 (1981), pp. 1-24. Zbl0462.58014MR604040
  18. [18] R. Schoen - K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geometry18 (1983), pp. 253-268. Zbl0547.58020MR710054
  19. [19] R. Schoen - S.T. Yau, Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature, Annals of Math.110 (1979), pp. 127-142. Zbl0431.53051MR541332
  20. [20] F. Tomi, Variationsprobleme vom Dirichlet-typ mit einer Ungleichung als Nebenbedingung, Math. Z.128 (1972), pp. 43-74. Zbl0243.49023MR322624
  21. [21] H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Analysis and Appl. 26 (1969), pp. 318-344. Zbl0181.11501MR243467
  22. [22] H. Wente, The differential equation Δx = 2Hx u ^ xv with vanishing boundary values, Proc. A.M.S. 50 (1975), pp. 131-137. Zbl0313.35030
  23. [23] H. Wente, Large solutions to the Volume Constrained Plateau Problem, Arch. Rat. Mech. and Analysis75 (1980), pp. 59-77. Zbl0473.49029MR592104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.