Source type positive solutions of nonlinear parabolic inequalities

Isabelle Moutoussamy; Laurent Veron

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)

  • Volume: 16, Issue: 4, page 527-555
  • ISSN: 0391-173X

How to cite

top

Moutoussamy, Isabelle, and Veron, Laurent. "Source type positive solutions of nonlinear parabolic inequalities." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.4 (1989): 527-555. <http://eudml.org/doc/84061>.

@article{Moutoussamy1989,
author = {Moutoussamy, Isabelle, Veron, Laurent},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {blow up; fundamental solution; singular solutions},
language = {eng},
number = {4},
pages = {527-555},
publisher = {Scuola normale superiore},
title = {Source type positive solutions of nonlinear parabolic inequalities},
url = {http://eudml.org/doc/84061},
volume = {16},
year = {1989},
}

TY - JOUR
AU - Moutoussamy, Isabelle
AU - Veron, Laurent
TI - Source type positive solutions of nonlinear parabolic inequalities
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 4
SP - 527
EP - 555
LA - eng
KW - blow up; fundamental solution; singular solutions
UR - http://eudml.org/doc/84061
ER -

References

top
  1. [1] D.G. Aronson - J. Serrin, Local behaviour of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal., 25 (1967), 81-122. Zbl0154.12001MR244638
  2. [2] P. Aviles, Local behaviour of solutions of some elliptic equations, Comm. Math. Phys.108 (1987), 177-192. Zbl0617.35040MR875297
  3. [3] P. Baras - J.C. Hassan - L. Veron, Compacité de l'opérateur définissant la solution d' une équation d'évolution non homogène, C.R. Acad. Sci. Paris t. 284 ser. A (1977), 799-802. Zbl0348.47026MR430864
  4. [4] P. Baras - M. Pierre, Problèmes paraboliques semilinéaires avec données mesures, Appl. Anal. (1986). Zbl0582.35060
  5. [5] P. Baras - M. Pierre, Critère d' existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré, Anal. Non-linéaire2 (1985), 185-212. Zbl0599.35073MR797270
  6. [6] H. Brezis - A. Friedman, Nonlinear parabolic equations involving measure as initial conditions, Jl. Math. Pures & Appl.62 (1983), 73-97. Zbl0527.35043MR700049
  7. [7] H. Brezis - P.L. Lions, A note on isolated singularities for linear elliptic equations, Mathematical Analysis & Applications7A (1981), 263-266. Zbl0468.35036MR634242
  8. [8] H. Brezis - L.A. Peletier - D. Terman, A very singular solution of the heat equation with absorption, Arch. Rat. Mech. Anal.95 (1986), 185-209. Zbl0627.35046MR853963
  9. [9] X.Y. Chen - H. Matano - L. Veron, Anisotropic singularities of nonlinear elliptic equations in R2, Jl. Funct. Anal., 83 (1989), 50-97. Zbl0687.35020MR993442
  10. [10] B. Gidas - J. Spruck, Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (1980), 525-598. Zbl0465.35003MR615628
  11. [11] Y. Giga - R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math.38 (1985), 297-319. Zbl0585.35051MR784476
  12. [12] A. Haraux - F.B. Weissler, Non-uniqueness for a semilinear initial value problem, Ind. Univ. Math. J1. 31 (1982), 167-189. Zbl0465.35049MR648169
  13. [13] S. Kamin - L.A. Peletier, Singular solutions of the heat equation with absorption, Proc. Amer. Math. Soc.95 (1985), 205-210. Zbl0607.35046MR801324
  14. [14] S. Kamin - L. Veron, Existence and uniqueness of the very singular solution of the porous media equation with absorption, Jl. d'Analyse Math.51 (1988), 245-258. Zbl0673.35044MR963156
  15. [15] O.A. Ladyzenskaja - V.A. Solonnikov - N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, Vol. 23, Trans. of Math. Mon., A.M.S.Providence (1968). Zbl0174.15403MR241822
  16. [16] P.L. Lions, Isolated singularities in semilinear problems, J. Diff. Equ.38 (1980), 441-450. Zbl0458.35033MR605060
  17. [17] I. Moutoussamy, Symétries et singularités de solutions d' équations paraboliques semi-linéaires, Ph. D. Thesis, Université de Tours (1987). 
  18. [18] I. Moutoussamy - L. Veron, Isolated singularities of a semilinear heat equation, in preparation. 
  19. [19] L. Oswald, Isolated, positive singularities for a nonlinear heat equation, Houston Jl. Math. (to appear). Zbl0696.35023MR998457
  20. [20] Y. Richard - L. Veron, Isotropic singularities of solutions of nonlinear elliptic inequalities, Ann. Inst. H. Poincaré, Anal. Nonlinéaire, 6 (1989), 37-72. Zbl0702.35083MR984147
  21. [21] F.B. Weissler, Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation, Arch. Rat. Mech. Anal.91 (1986), 231-245. Zbl0614.35043MR806003
  22. [22] F.B. Weissler, Rapidly decaying solutions of an ordinary differential equation with applications to semilinear elliptic and parabolic partial differential equations, Arch. Rat. Mech. Anal.91 (1986), 247-266. Zbl0604.34034MR806004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.