Induced representations of completely solvable Lie groups

Ronald L. Lipsman

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)

  • Volume: 17, Issue: 1, page 127-164
  • ISSN: 0391-173X

How to cite

top

Lipsman, Ronald L.. "Induced representations of completely solvable Lie groups." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.1 (1990): 127-164. <http://eudml.org/doc/84066>.

@article{Lipsman1990,
author = {Lipsman, Ronald L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {induced representations; completely solvable Lie groups; orbit method; Lie algebra; connected subgroup; irreducible unitary representation; unitary dual; coadjoint orbits; decomposition formula},
language = {eng},
number = {1},
pages = {127-164},
publisher = {Scuola normale superiore},
title = {Induced representations of completely solvable Lie groups},
url = {http://eudml.org/doc/84066},
volume = {17},
year = {1990},
}

TY - JOUR
AU - Lipsman, Ronald L.
TI - Induced representations of completely solvable Lie groups
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 1
SP - 127
EP - 164
LA - eng
KW - induced representations; completely solvable Lie groups; orbit method; Lie algebra; connected subgroup; irreducible unitary representation; unitary dual; coadjoint orbits; decomposition formula
UR - http://eudml.org/doc/84066
ER -

References

top
  1. [1] P. Bernat, Sur les représentations unitaires des groupes de Lie résolubles, Ann. Sci. Ecole Norm. Sup., 82 (1965), 37-99. Zbl0138.07302MR194553
  2. [2] P. Bernat, et al., Représentations des groupes de Lie résolubles, Dunod, Paris, 1972. Zbl0248.22012MR444836
  3. [3] I. Butsyatskaya, Representations of exponential Lie groups, Functional Anal. Appl., 7 (1973), 151-152. Zbl0286.22013MR325855
  4. [4] L. Corwin - F. Greenleaf - G. Grelaud, Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc., 304 (1987), 549-583. Zbl0629.22005MR911085
  5. [5] L. Corwin - F. Greenleaf, Complex algebraic geometry and calculation of multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc., 305 (1988), 601-622. Zbl0651.22004MR924771
  6. [6] A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math. Surveys, 17 (1962), 53-104. Zbl0106.25001MR142001
  7. [7] A. Kleppner - R. Lipsman, The Plancherel formula for group extensions I, Ann. Sci. Ecole Norm. Sup., 5 (1972), 459-516. Zbl0239.43003MR342641
  8. [8] R. Lipsman, Characters of Lie groups II, J. Analyse Math., 31 (1977), 257-286. Zbl0351.22009MR579006
  9. [9] R. Lipsman, Orbital parameters for induced and restricted representations, Trans. Amer. Math. Soc., 313 (1989), 433-473. Zbl0683.22009MR930083
  10. [10] R. Lipsman, Harmonic analysis on exponential solvable homogeneous spaces: The algebraic or symmetric cases, Pacific J. Math., 140 (1989), 117-147. Zbl0645.43010MR1019070
  11. [11] G. Mackey, Unitary representations of group extensions, Acta Math., 99 (1958), 265-311. Zbl0082.11301MR98328
  12. [12] L. Pukanszky, Unitary representations of Lie groups with co-compact radical and applications, Trans Amer. Math. Soc., 236 (1978), 1-49. Zbl0389.22009MR486313
  13. [13] O. Takenouchi, Sur la facteur représentation d'une groupe de Lie résoluble de type (E), Math. J. Okayama Univ., 7 (1957), 151-161. Zbl0080.02302MR97464

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.