Geometric regularity versus analytic regularity higher codimensional case

E. Amar; L. Lempert

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)

  • Volume: 17, Issue: 2, page 297-321
  • ISSN: 0391-173X

How to cite

top

Amar, E., and Lempert, L.. "Geometric regularity versus analytic regularity higher codimensional case." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.2 (1990): 297-321. <http://eudml.org/doc/84075>.

@article{Amar1990,
author = {Amar, E., Lempert, L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {bounded pseudo convex domain; smooth boundary; smooth manifold},
language = {eng},
number = {2},
pages = {297-321},
publisher = {Scuola normale superiore},
title = {Geometric regularity versus analytic regularity higher codimensional case},
url = {http://eudml.org/doc/84075},
volume = {17},
year = {1990},
}

TY - JOUR
AU - Amar, E.
AU - Lempert, L.
TI - Geometric regularity versus analytic regularity higher codimensional case
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 2
SP - 297
EP - 321
LA - eng
KW - bounded pseudo convex domain; smooth boundary; smooth manifold
UR - http://eudml.org/doc/84075
ER -

References

top
  1. [1] E. Amar, Cohomologie Complexe et Applications, J. London Math. Soc.212, 29 (1984), 127-140. Zbl0583.32033MR734998
  2. [2] E. Amar, Geometric regularity versus Analytic regularity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) XIV, 2 (1987), 277-283. Zbl0641.32013MR939630
  3. [3] E. Amar, Non cohérence de certaines algèbres de fonctions analytiques, Illinois J. Math.25, 1, (1981). MR602897
  4. [4] F. Docquier - H. GrauertLevishes Problem und Rungescher Satz für Teilgebeite Steinscher Manningfaltigkeiten, Math. Ann.140 (1960) 94-123. Zbl0095.28004MR148939
  5. [5] H. Grauert, Analytische Faserungen über holomorph-vollständingen Räumen, Math. Ann.135 (1958) 263-273. Zbl0081.07401MR98199
  6. [6] D. Heuneuman, Theorem B for Stein Manifolds with Strictly Pseudoconvex Boundary, Math. Nachr.128 (1984) 87-101. Zbl0611.32013MR855946
  7. [7] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Princeton University Press, Princeton (1966). Zbl0138.06203MR203075
  8. [8] J.J. Kohn, Global Regularity of ∂ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc., 181 (1973), 273-292. Zbl0276.35071
  9. [9] I. Lieb - M. Range, Preprint. 
  10. [10] A. Sebbar, Thèse d'Etat, Université de Bordeaux I, (1986). 
  11. [11] J.C. Tougeron, Idéaux de Fonctions Différentiables, Ergeb. Math.71 (1972). Zbl0251.58001MR440598

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.