Geometric regularity versus analytic regularity higher codimensional case
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)
- Volume: 17, Issue: 2, page 297-321
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAmar, E., and Lempert, L.. "Geometric regularity versus analytic regularity higher codimensional case." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.2 (1990): 297-321. <http://eudml.org/doc/84075>.
@article{Amar1990,
author = {Amar, E., Lempert, L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {bounded pseudo convex domain; smooth boundary; smooth manifold},
language = {eng},
number = {2},
pages = {297-321},
publisher = {Scuola normale superiore},
title = {Geometric regularity versus analytic regularity higher codimensional case},
url = {http://eudml.org/doc/84075},
volume = {17},
year = {1990},
}
TY - JOUR
AU - Amar, E.
AU - Lempert, L.
TI - Geometric regularity versus analytic regularity higher codimensional case
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 2
SP - 297
EP - 321
LA - eng
KW - bounded pseudo convex domain; smooth boundary; smooth manifold
UR - http://eudml.org/doc/84075
ER -
References
top- [1] E. Amar, Cohomologie Complexe et Applications, J. London Math. Soc.212, 29 (1984), 127-140. Zbl0583.32033MR734998
- [2] E. Amar, Geometric regularity versus Analytic regularity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) XIV, 2 (1987), 277-283. Zbl0641.32013MR939630
- [3] E. Amar, Non cohérence de certaines algèbres de fonctions analytiques, Illinois J. Math.25, 1, (1981). MR602897
- [4] F. Docquier - H. GrauertLevishes Problem und Rungescher Satz für Teilgebeite Steinscher Manningfaltigkeiten, Math. Ann.140 (1960) 94-123. Zbl0095.28004MR148939
- [5] H. Grauert, Analytische Faserungen über holomorph-vollständingen Räumen, Math. Ann.135 (1958) 263-273. Zbl0081.07401MR98199
- [6] D. Heuneuman, Theorem B for Stein Manifolds with Strictly Pseudoconvex Boundary, Math. Nachr.128 (1984) 87-101. Zbl0611.32013MR855946
- [7] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Princeton University Press, Princeton (1966). Zbl0138.06203MR203075
- [8] J.J. Kohn, Global Regularity of ∂ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc., 181 (1973), 273-292. Zbl0276.35071
- [9] I. Lieb - M. Range, Preprint.
- [10] A. Sebbar, Thèse d'Etat, Université de Bordeaux I, (1986).
- [11] J.C. Tougeron, Idéaux de Fonctions Différentiables, Ergeb. Math.71 (1972). Zbl0251.58001MR440598
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.