Realization of any finite jet in a scalar semilinear parabolic equation on the ball in 3

Peter Poláčik

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)

  • Volume: 18, Issue: 1, page 83-102
  • ISSN: 0391-173X

How to cite

top

Poláčik, Peter. "Realization of any finite jet in a scalar semilinear parabolic equation on the ball in $\mathbb {R}^3$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.1 (1991): 83-102. <http://eudml.org/doc/84097>.

@article{Poláčik1991,
author = {Poláčik, Peter},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {local dynamical system; dynamic complexity; restrictions; mode interaction bifurcation},
language = {eng},
number = {1},
pages = {83-102},
publisher = {Scuola normale superiore},
title = {Realization of any finite jet in a scalar semilinear parabolic equation on the ball in $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/84097},
volume = {18},
year = {1991},
}

TY - JOUR
AU - Poláčik, Peter
TI - Realization of any finite jet in a scalar semilinear parabolic equation on the ball in $\mathbb {R}^3$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 1
SP - 83
EP - 102
LA - eng
KW - local dynamical system; dynamic complexity; restrictions; mode interaction bifurcation
UR - http://eudml.org/doc/84097
ER -

References

top
  1. [Am] H. Amann, On abstract parabolic fundamental solutions, J. Math. Soc. Japan, 39 (1987), 93-116. Zbl0616.47032MR867989
  2. [Be] M.S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York1977. Zbl0368.47001MR488101
  3. [Bi] Y.N. Bibikov, Bifurcation of invariant tori for systems with degeneracy, (in Russian), in: Questions of The Qualitative Theory of Differential Equations, V.M. Matrosov and L.Y. Anapolskii (eds.), Nauka, Novosibirsk1988, 1-23. 
  4. [Ch-H] S.N. Chow - J.K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York1982. Zbl0487.47039MR660633
  5. [Co-H] R. Courant - D. Hilbert, Methods of Mathematical Physics, Interscience, New York1953. Zbl0051.28802MR65391
  6. [Da 1] E.N. Dancer, The effect of domain shape on the positive solutions of certain nonlinear equations, J. Differential Equations74 (1988), 120-156. Zbl0662.34025MR949628
  7. [Da 2] E.N. Dancer, On the existence of two-dimensional invariant tori for scalar parabolic equations with time periodic coefficients, preprint. Zbl0779.35049
  8. [F-P] B. Fiedler - P. POLÁčIK, Complicated dynamics of a scalar reaction diffusion equation with a nonlocal term, Proc. Roy. Soc. Edinburgh, 115A (1990), 167-192. Zbl0726.35060MR1059652
  9. [G-S] M. Golubitski - D. Schaeffer, Singularities and Groups in Bifurcation Theory, Appl. Math. Sci.51, Springer-Verlag, New York1986. Zbl0607.35004
  10. [Ha 1] J.K. Hale, Flows on centre manifolds for scalar functional differential equations, Proc. Roy. Soc. Edinburgh, 101A (1985), 193-201. Zbl0582.34058MR824220
  11. [Ha 2] J.K. Hale, Local flows for functional differential equations, Contemp. Math.56, Amer. Math. Soc., Providence1986, 185-192. Zbl0612.34066MR855090
  12. [He] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, New York1981. Zbl0456.35001MR610244
  13. [Ka] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin1966. Zbl0148.12601MR203473
  14. [Ma] H. Matano, Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ.18 (1978), 221-227. Zbl0387.35008MR501842
  15. [Po 1] P Poláčik, Convergence in smooth strongly monotone flows defined by semilinear parabolic equations, J. Differential Equations79 (1989), 89-110. Zbl0684.34064MR997611
  16. [Po 2] P Poláčik, Domains of attraction of equilibria and monotonicity properties of convergent trajectories in semilinear parabolic systems admitting strong comparison principle, J. Reine Angew. Math., 400 (1989), 32-56. Zbl0667.35036MR1013724
  17. [Po 3] P Poláčik, Complicated dynamics in scalar semilinear parabolic equations in higher space dimension, J. Differential Equations, 89 (1991), 244-271. Zbl0738.35027MR1091478
  18. [Po 4] P Poláčik, Imbedding of any vector field in a scalar semilinear parabolic equation, Proc. AMS, to appear. Zbl0755.35046MR1089411
  19. [Sm] V.I. Smirnov, A Course of Advanced Mathematics III2, Nauka, Moscow, 1974. MR361650
  20. [Ta] P Takáč, Domains of attraction of generic w-limit sets for strongly monotone semiflows, Z. Anal. Anwendungen, to appear. Zbl0764.58019MR1155611
  21. [Tr] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam1978. Zbl0387.46032MR503903
  22. [Va] A. Vanderbauwhede, Local Bifurcation and Symmetry, Research Notes in Mathematics, Pitman, Boston1982. Zbl0539.58022MR697724
  23. [Ze] T.J. Zelenyak, Stabilization of solutions of boundary value problems for a second order parabolic equations with one space variable, Differential Equations4 (1968), pp. 17-22. Zbl0232.35053MR223758

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.