Reaction-diffusion systems with prescribed large time behaviour

S. A. Vakulenko

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 66, Issue: 4, page 373-410
  • ISSN: 0246-0211

How to cite

top

Vakulenko, S. A.. "Reaction-diffusion systems with prescribed large time behaviour." Annales de l'I.H.P. Physique théorique 66.4 (1997): 373-410. <http://eudml.org/doc/76757>.

@article{Vakulenko1997,
author = {Vakulenko, S. A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {realization of vector fields; complex dynamics; Neumann boundary condition; inertial manifold},
language = {eng},
number = {4},
pages = {373-410},
publisher = {Gauthier-Villars},
title = {Reaction-diffusion systems with prescribed large time behaviour},
url = {http://eudml.org/doc/76757},
volume = {66},
year = {1997},
}

TY - JOUR
AU - Vakulenko, S. A.
TI - Reaction-diffusion systems with prescribed large time behaviour
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 66
IS - 4
SP - 373
EP - 410
LA - eng
KW - realization of vector fields; complex dynamics; Neumann boundary condition; inertial manifold
UR - http://eudml.org/doc/76757
ER -

References

top
  1. [1] I. Prigogine and G. Nicolis, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977). Zbl0363.93005MR522141
  2. [2] H. Haken, Synergetics. An Introduction (Springer, Heidelberg, New York, 1977). Zbl0396.93001MR471840
  3. [3] G. Foias and G. Prodi, Sur le comportement global des solutions nonstationaire des équations de Navier-Stokes en dimensional 2, Rend. Semin. Math. Univ. di Padova, Vol. 39, 1967, pp. 1-34. Zbl0176.54103MR223716
  4. [4] A.B. Babin, M.I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., Vol. 62, 1983, pp. 441-491. Zbl0565.47045MR735932
  5. [5] O.A. Ladygenskaya, Finding minimal global attractors for Navier-Stokes equations and other partial differential equations, Uspechi Mat. Nauk, Vol. 42, 1987, pp. 25-60. Zbl0687.35072MR933994
  6. [6] Yu.S. Il'ashenko, Weakly contracting systems and attractors of Galerkin approximation for Navier-Stokes equation on two-dimensional torus, Uspechi Mechanics, Vol. 1, 1982, pp. 31-63. Zbl0789.35132
  7. [7] J.K. Hale, 1988, Asymptotic behavior of dissipative systems (Providence: American Mathematical Society). Zbl0642.58013MR941371
  8. [8] I.D. Chueshov, Global attractors in nonlinear problems, Uspechi Mat. Nauk, Vol. 48, 1993, pp. 135-162. Zbl0805.58042MR1243614
  9. [9] P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integrable manifolds and inertial manifolds for dissipative differential equations, 1989. Zbl0683.58002
  10. [10] R. Mane, Reduction of semilinear parabolic equations to finite dimensional C1-flow, Geometry and Topology, Lecture Notes in Mathematics No. 597, Springer-Verlag, New York, 1977, pp. 361-378. Zbl0412.35049MR451309
  11. [11] J. Mallet-Paret and G.R. Sell, Inertial manifolds for reaction-diffusion equations in higher space dimensions, J. Amer. Math. Soc., Vol. 1, 1988, pp. 805-866. Zbl0674.35049MR943276
  12. [12] R. Temam, Infinite dimensional dynamical systems in mechanics and physics, New York etc., (Springer, 1988). Zbl0662.35001MR953967
  13. [13] M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew Math., Vol. 383, 1988, pp. 1-58. Zbl0624.58017MR921986
  14. [14] H.L. Smith and H.R. Thieme, Convergence for strongly order preserving semiflows SIAM, J. Math. Anal.., Vol. 22, 1991, pp. 1081-1101. Zbl0739.34040MR1112067
  15. [15] P. Polacik and I. Terescak, Convergence to cycles as a typical asyptotic behavior in smooth discrete-time strongly monotone dynamical systems, Arch. Rat. Mech. Anal., Vol. 116, 1991, pp. 339-360. Zbl0755.58039MR1132766
  16. [16] P. Polacik and I. Terescak, Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations, J. Dynamics Diff. Equations, Vol. 5, 1993, pp. 279-303. Zbl0786.58002MR1223450
  17. [17] B. Fiedler and J. Mallet-Paret, A Poincare-Bendixson theorem for scalar reaction-diffusion equations, Arch. Rat. Mech. and Anal., Vol. 107, 1989, pp. 325-345. Zbl0704.35070MR1004714
  18. [18] T.I. Zelenyak, Stabilization of solution of boundary nonlinear problems for a second order parabolic equations with one space variable. Diff. Eq., Vol. 4, 1968, pp. 17-22. Zbl0232.35053
  19. [19] P. Polacik, Realization of any finite jet in a scalar semilinear parabolic equation on the ball in R2, Annali Scuola Norm Pisa, Vol. 17, 1991, pp. 83-102. Zbl0774.35041MR1118222
  20. [20] P. Polacik, Complicated dynamics in Scalar Semilinear Parabolic Equations, In Higher Space Dimensions, J. of Diff. Eq., Vol. 89, 1991, pp. 244-271. Zbl0738.35027MR1091478
  21. [21] N.V. Nikolenko, Invariant asymptotically stable tori for perturbed KdV, Uspechi Mat. Nauk, Vol. 35, 1980, pp. 121-181. Zbl0451.35074MR595143
  22. [22] B. Fiedler and P. Polacik, Complicated dynamics of scalar reaction-diffusion equations with a nonlocal term, Proc. Roy. Soc., Edinburgh, Vol. 434A, 1990, pp. 167-192. Zbl0726.35060MR1059652
  23. [23] S.A. Vakulenko, The oscillating wave fronts, Nonlinear Analysis TMA, Vol. 19, 1992, pp. 1033-1046. Zbl0801.35042MR1194143
  24. [24] S.A. Vakulenko, Existence of Ruelle-Takens transition to for some evolution equations, C.R.A.S. Paris, Vol. 316, serie I, 1993, pp. 1015-1018. Zbl0799.35102MR1222964
  25. [25] S.A. Vakulenko, The existence of chemical waves with complex front movement, Zh. Vychisl. Mov. i Mat. Fiz., Vol. 31, 1991, pp. 735-744. MR1120014
  26. [26] V.I. Arnol'd, Geometric methods in Theory of Ordinary Differential Equations, 2nd ed. (New York: Springer1988). MR947141
  27. [27] S. Smale, Dynamics retrospective: great problems, attempts that failed, Physica D, Vol. 51, 1991, pp. 267-273. Zbl0745.58018MR1128817
  28. [28] S. Smale, Mathematics of Time (Springer, N. Y. 1980). Zbl0451.58001MR607330
  29. [29] D.V. Anosov, S.X. Aranson et al., Dynamical systems with hyperbolic behaviour Itogi Nauki i technikiSovr. Prob. Mat. VINITI, Vol. 66, 1991. MR1136551
  30. [30] D. Ruelle and F. Takens, On the nature of turbulence, Comm. Math. Phys., Vol. 20, 1971, pp.167-192. Zbl0223.76041MR284067
  31. [31] R. Newhouse, D. Ruelle and F. Takens, Occurence of strange axiom A attractors from quasi periodic flows, Comm. Math. Phys., Vol. 64, 1978, pp. 35-40. Zbl0396.58029MR516994
  32. [32] D. Ruelle, Elements of differentiable dynamics and bifurcation theory (Acad. Press, Boston etc., 1989). Zbl0684.58001MR982930
  33. [33] Z. Nitecki, Differentiable Dynamics (M.I.T. Press, Cambridge, etc., 1971). MR649788
  34. [34] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840 (Berlin: Springer1981). Zbl0456.35001MR610244
  35. [35] V.I. Arnol'd, Kolmogorov's hydrodynamic attractors, Proc. Roy. Soc. London, Ser. A, Vol. 434, 1991, pp. 19-22. Zbl0726.76045MR1124924
  36. [36] L.D. Meshalkin and Yu.G. Sinai, The study of the stability of a stationary solution of the systems of equations of the plane motion of the imcompressible vicsous fluid., Appl. Math. Mech., Vol. 6, 1961, pp. 1140-1143. Zbl0108.39501
  37. [37] V.I. Arnol'd, Mathematical methods in Classical Mechanics (Moscow1974). Zbl0647.70001
  38. [38] Y. Kuramoto, Chemical oscillations, waves and turbulence (Springer, Berlin, etc., 1984). Zbl0558.76051MR762432

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.