Reaction-diffusion systems with prescribed large time behaviour
Annales de l'I.H.P. Physique théorique (1997)
- Volume: 66, Issue: 4, page 373-410
- ISSN: 0246-0211
Access Full Article
topHow to cite
topVakulenko, S. A.. "Reaction-diffusion systems with prescribed large time behaviour." Annales de l'I.H.P. Physique théorique 66.4 (1997): 373-410. <http://eudml.org/doc/76757>.
@article{Vakulenko1997,
author = {Vakulenko, S. A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {realization of vector fields; complex dynamics; Neumann boundary condition; inertial manifold},
language = {eng},
number = {4},
pages = {373-410},
publisher = {Gauthier-Villars},
title = {Reaction-diffusion systems with prescribed large time behaviour},
url = {http://eudml.org/doc/76757},
volume = {66},
year = {1997},
}
TY - JOUR
AU - Vakulenko, S. A.
TI - Reaction-diffusion systems with prescribed large time behaviour
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 66
IS - 4
SP - 373
EP - 410
LA - eng
KW - realization of vector fields; complex dynamics; Neumann boundary condition; inertial manifold
UR - http://eudml.org/doc/76757
ER -
References
top- [1] I. Prigogine and G. Nicolis, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977). Zbl0363.93005MR522141
- [2] H. Haken, Synergetics. An Introduction (Springer, Heidelberg, New York, 1977). Zbl0396.93001MR471840
- [3] G. Foias and G. Prodi, Sur le comportement global des solutions nonstationaire des équations de Navier-Stokes en dimensional 2, Rend. Semin. Math. Univ. di Padova, Vol. 39, 1967, pp. 1-34. Zbl0176.54103MR223716
- [4] A.B. Babin, M.I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., Vol. 62, 1983, pp. 441-491. Zbl0565.47045MR735932
- [5] O.A. Ladygenskaya, Finding minimal global attractors for Navier-Stokes equations and other partial differential equations, Uspechi Mat. Nauk, Vol. 42, 1987, pp. 25-60. Zbl0687.35072MR933994
- [6] Yu.S. Il'ashenko, Weakly contracting systems and attractors of Galerkin approximation for Navier-Stokes equation on two-dimensional torus, Uspechi Mechanics, Vol. 1, 1982, pp. 31-63. Zbl0789.35132
- [7] J.K. Hale, 1988, Asymptotic behavior of dissipative systems (Providence: American Mathematical Society). Zbl0642.58013MR941371
- [8] I.D. Chueshov, Global attractors in nonlinear problems, Uspechi Mat. Nauk, Vol. 48, 1993, pp. 135-162. Zbl0805.58042MR1243614
- [9] P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integrable manifolds and inertial manifolds for dissipative differential equations, 1989. Zbl0683.58002
- [10] R. Mane, Reduction of semilinear parabolic equations to finite dimensional C1-flow, Geometry and Topology, Lecture Notes in Mathematics No. 597, Springer-Verlag, New York, 1977, pp. 361-378. Zbl0412.35049MR451309
- [11] J. Mallet-Paret and G.R. Sell, Inertial manifolds for reaction-diffusion equations in higher space dimensions, J. Amer. Math. Soc., Vol. 1, 1988, pp. 805-866. Zbl0674.35049MR943276
- [12] R. Temam, Infinite dimensional dynamical systems in mechanics and physics, New York etc., (Springer, 1988). Zbl0662.35001MR953967
- [13] M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew Math., Vol. 383, 1988, pp. 1-58. Zbl0624.58017MR921986
- [14] H.L. Smith and H.R. Thieme, Convergence for strongly order preserving semiflows SIAM, J. Math. Anal.., Vol. 22, 1991, pp. 1081-1101. Zbl0739.34040MR1112067
- [15] P. Polacik and I. Terescak, Convergence to cycles as a typical asyptotic behavior in smooth discrete-time strongly monotone dynamical systems, Arch. Rat. Mech. Anal., Vol. 116, 1991, pp. 339-360. Zbl0755.58039MR1132766
- [16] P. Polacik and I. Terescak, Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations, J. Dynamics Diff. Equations, Vol. 5, 1993, pp. 279-303. Zbl0786.58002MR1223450
- [17] B. Fiedler and J. Mallet-Paret, A Poincare-Bendixson theorem for scalar reaction-diffusion equations, Arch. Rat. Mech. and Anal., Vol. 107, 1989, pp. 325-345. Zbl0704.35070MR1004714
- [18] T.I. Zelenyak, Stabilization of solution of boundary nonlinear problems for a second order parabolic equations with one space variable. Diff. Eq., Vol. 4, 1968, pp. 17-22. Zbl0232.35053
- [19] P. Polacik, Realization of any finite jet in a scalar semilinear parabolic equation on the ball in R2, Annali Scuola Norm Pisa, Vol. 17, 1991, pp. 83-102. Zbl0774.35041MR1118222
- [20] P. Polacik, Complicated dynamics in Scalar Semilinear Parabolic Equations, In Higher Space Dimensions, J. of Diff. Eq., Vol. 89, 1991, pp. 244-271. Zbl0738.35027MR1091478
- [21] N.V. Nikolenko, Invariant asymptotically stable tori for perturbed KdV, Uspechi Mat. Nauk, Vol. 35, 1980, pp. 121-181. Zbl0451.35074MR595143
- [22] B. Fiedler and P. Polacik, Complicated dynamics of scalar reaction-diffusion equations with a nonlocal term, Proc. Roy. Soc., Edinburgh, Vol. 434A, 1990, pp. 167-192. Zbl0726.35060MR1059652
- [23] S.A. Vakulenko, The oscillating wave fronts, Nonlinear Analysis TMA, Vol. 19, 1992, pp. 1033-1046. Zbl0801.35042MR1194143
- [24] S.A. Vakulenko, Existence of Ruelle-Takens transition to for some evolution equations, C.R.A.S. Paris, Vol. 316, serie I, 1993, pp. 1015-1018. Zbl0799.35102MR1222964
- [25] S.A. Vakulenko, The existence of chemical waves with complex front movement, Zh. Vychisl. Mov. i Mat. Fiz., Vol. 31, 1991, pp. 735-744. MR1120014
- [26] V.I. Arnol'd, Geometric methods in Theory of Ordinary Differential Equations, 2nd ed. (New York: Springer1988). MR947141
- [27] S. Smale, Dynamics retrospective: great problems, attempts that failed, Physica D, Vol. 51, 1991, pp. 267-273. Zbl0745.58018MR1128817
- [28] S. Smale, Mathematics of Time (Springer, N. Y. 1980). Zbl0451.58001MR607330
- [29] D.V. Anosov, S.X. Aranson et al., Dynamical systems with hyperbolic behaviour Itogi Nauki i technikiSovr. Prob. Mat. VINITI, Vol. 66, 1991. MR1136551
- [30] D. Ruelle and F. Takens, On the nature of turbulence, Comm. Math. Phys., Vol. 20, 1971, pp.167-192. Zbl0223.76041MR284067
- [31] R. Newhouse, D. Ruelle and F. Takens, Occurence of strange axiom A attractors from quasi periodic flows, Comm. Math. Phys., Vol. 64, 1978, pp. 35-40. Zbl0396.58029MR516994
- [32] D. Ruelle, Elements of differentiable dynamics and bifurcation theory (Acad. Press, Boston etc., 1989). Zbl0684.58001MR982930
- [33] Z. Nitecki, Differentiable Dynamics (M.I.T. Press, Cambridge, etc., 1971). MR649788
- [34] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840 (Berlin: Springer1981). Zbl0456.35001MR610244
- [35] V.I. Arnol'd, Kolmogorov's hydrodynamic attractors, Proc. Roy. Soc. London, Ser. A, Vol. 434, 1991, pp. 19-22. Zbl0726.76045MR1124924
- [36] L.D. Meshalkin and Yu.G. Sinai, The study of the stability of a stationary solution of the systems of equations of the plane motion of the imcompressible vicsous fluid., Appl. Math. Mech., Vol. 6, 1961, pp. 1140-1143. Zbl0108.39501
- [37] V.I. Arnol'd, Mathematical methods in Classical Mechanics (Moscow1974). Zbl0647.70001
- [38] Y. Kuramoto, Chemical oscillations, waves and turbulence (Springer, Berlin, etc., 1984). Zbl0558.76051MR762432
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.