Continuity of the Darcy's law in the low-volume fraction limit

Grégoire Allaire

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)

  • Volume: 18, Issue: 4, page 475-499
  • ISSN: 0391-173X

How to cite

top

Allaire, Grégoire. "Continuity of the Darcy's law in the low-volume fraction limit." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.4 (1991): 475-499. <http://eudml.org/doc/84110>.

@article{Allaire1991,
author = {Allaire, Grégoire},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {periodic porous media; Stokes equation in a porous medium; relation between permeability tensors; velocity},
language = {eng},
number = {4},
pages = {475-499},
publisher = {Scuola normale superiore},
title = {Continuity of the Darcy's law in the low-volume fraction limit},
url = {http://eudml.org/doc/84110},
volume = {18},
year = {1991},
}

TY - JOUR
AU - Allaire, Grégoire
TI - Continuity of the Darcy's law in the low-volume fraction limit
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 4
SP - 475
EP - 499
LA - eng
KW - periodic porous media; Stokes equation in a porous medium; relation between permeability tensors; velocity
UR - http://eudml.org/doc/84110
ER -

References

top
  1. [1] G. Allaire, Homogenization of the Stokes flow in a connected porous medium, Asymptotic Anal.2, 3, (1989) pp. 203-222. Zbl0682.76077MR1020348
  2. [2] G. Allaire, Homogénéisation des équations de Stokes dans un domaine perforé de petits trous répartis périodiquement, C. R. Acad. Sci. Paris, Sér. I, 309, 11, (1989) pp. 741-746. Zbl0696.73010MR1054290
  3. [3] G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes, Arch. Rational Mech. Anal., 113, (1991) pp. 209-298. Zbl0724.76021MR1079189
  4. [4] G. Allaire, Homogenization of the Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., XLIV, (1991) pp. 605-641. Zbl0738.35059MR1109374
  5. [5] A. Bensoussan - J.L. Lions - G. Papanicolaou, Asymptotic analysis for periodic structures, North-Holland (1978). Zbl0404.35001MR503330
  6. [6] D. Cioranescu - F. Murat, Un terme étrange venu d'ailleurs, Nonlinear partial differential equations and their applications, Collège de France seminar, Vol. 2 & 3, ed. by H, Brézis & J.L. Lions, Research notes in mathematics60 & 70, Pitman, London (1982). Zbl0496.35030
  7. [7] E. De Giorgi, G-operateurs and r-convergence, Proceedings of the International Congress of Mathematicians (Warsazwa, August 1983), PWN Polish Scientific Publishers and North Holland, (1984) pp. 1175-1191. Zbl0568.35025
  8. [8] R. Finn, D. Smith, On the linearized hydrodynamical equations in two dimensions, Arch. Rational Mech. Anal., 25, (1967) pp. 1-25. Zbl0152.45001MR211668
  9. [9] H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid Mech., 5, (1959) pp. 317-328. Zbl0086.19901MR102285
  10. [10] J.B. Keller, Darcy's law for flow in porous media and the two-space method, Lecture Notes in Pure and Appl. Math., 54, Dekker, New York (1980). Zbl0439.76017MR577105
  11. [11] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach (1969). Zbl0184.52603MR254401
  12. [12] T. Levy, Fluid flow through an array of fixed particles, Internat. J. Engrg. Sci., 21, (1983) pp. 11-23. Zbl0539.76092MR691100
  13. [13] T. Levy - E. Sanchez-Palencia, Einstein-like approximation for homogenization with small concentration. II - Navier-Stokes equations, Nonlinear Anal., 9, 11, (1985) pp. 1255-1268. Zbl0581.76097MR813657
  14. [14] J.L. Lions, Some methods in the mathematical analysis of systems and their control, Beijing, Gordon and Breach, New York (1981). Zbl0542.93034MR664760
  15. [15] R. Lipton - M. Avellaneda, Darcy's law for slow viscous flow past a stationary array of bubbles, Proc. Roy. Soc. Edinburgh, 114A, (1990) pp. 71-79. Zbl0850.76778MR1051608
  16. [16] F. Murat, H-convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes (1978). 
  17. [17] R.S. Rayleigh, On the influence of obstacles arranged in rectangular order upon the properties of medium, Phil. Mag.34, (1892) pp. 481-502. Zbl24.1015.02JFM24.1015.02
  18. [18] E. Sanchez-Palencia, On the asymptotics of the fluid flow past an array of fixed obstacles, Internat. J. Engrg. Sci., 20, (1982) pp. 1291-1301. Zbl0501.76086MR678289
  19. [19] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys. 127, Springer Verlag (1980). Zbl0432.70002MR578345
  20. [20] E. Sanchez-Palencia, Einstein-like approximation for homogenization with small concentration. I - Elliptic problems, Nonlinear Anal.9, 11, (1985) pp. 1243-1254. Zbl0538.76086MR813656
  21. [21] A.S. Sangani, A. Acrivos, Slow flow through a periodic array of spheres, Internal. J. Multiphase Flow, 8, 4, (1982) pp. 343-360. Zbl0541.76041
  22. [22] L. Tartar, Convergence of the homogenization process, Appendix of [19]. 
  23. [23] L. Tartar, Cours Peccot au Collège de France, Unpublished (mars 1977). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.