Hyperbolic systems of partial differential inclusions

Jean-Pierre Aubin; Hélène Frankowska

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)

  • Volume: 18, Issue: 4, page 541-562
  • ISSN: 0391-173X

How to cite

top

Aubin, Jean-Pierre, and Frankowska, Hélène. "Hyperbolic systems of partial differential inclusions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.4 (1991): 541-562. <http://eudml.org/doc/84113>.

@article{Aubin1991,
author = {Aubin, Jean-Pierre, Frankowska, Hélène},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {first-order hyperbolic systems of partial differential inclusions; contingent single-valued and set-valued solutions},
language = {eng},
number = {4},
pages = {541-562},
publisher = {Scuola normale superiore},
title = {Hyperbolic systems of partial differential inclusions},
url = {http://eudml.org/doc/84113},
volume = {18},
year = {1991},
}

TY - JOUR
AU - Aubin, Jean-Pierre
AU - Frankowska, Hélène
TI - Hyperbolic systems of partial differential inclusions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 4
SP - 541
EP - 562
LA - eng
KW - first-order hyperbolic systems of partial differential inclusions; contingent single-valued and set-valued solutions
UR - http://eudml.org/doc/84113
ER -

References

top
  1. [1] J.-P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, Adv. Math. Suppl. Stud., Ed. Nachbin L., (1981), 160-232. Zbl0484.47034MR634239
  2. [2] J.-P. Aubin, A Survey of Viability Theory, SIAM J. Control Optim.28 (1990), 749-788. Zbl0714.49021MR1051623
  3. [3] J.-P. Aubin, Viability Theory, Birkhäuser, Boston, Basel, Berlin. (1991). Zbl0755.93003MR1134779
  4. [4] J.-P. Aubin - C. Byrnes - A. Isidori, Viability Kernels, Controlled Invariance and Zero Dynamics for Nonlinear Systems, Proceedings of the 9th International Conference on Analysis and Optimization of Systems, Nice, June 1990, Lecture Notes in Control and Information Sciences, Springer-Verlag (1990). Zbl0713.93026
  5. [5] J.-P. Aubin - A. Cellina, Differential Inclusions, Springer-Verlag, Grundlehren der Math. Wiss. (1984). Zbl0538.34007MR755330
  6. [6] J.-P. Aubin - G. Da Prato, Solutions contingentes de l'équation de la variété centrale, C.R. Acad. Sci. Paris Sér. I, 311 (1990), 295-300. Zbl0714.34072MR1071630
  7. [7] J.-P. Aubin - G. Da Prato, Contingent Solutions to the Center Manifold Equation, Ann. Inst. H. Poincaré, Anal. Non Linéaire (1991). Zbl0745.34039MR1151465
  8. [8] J.-P. Aubin - H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, Basel, Berlin (1990). Zbl0713.49021MR1048347
  9. [9] J.-P. Aubin - H. Frankowska, Inclusions aux dérivées partielles gouvernant des contrôles de rétroaction, C.R. Acad. Sci. Paris Sér. I, 311 (1990), 851-856. Zbl0722.93034MR1084041
  10. [10] J.-P. Aubin - H. Frankowska, Systèmes hyperboliques d'inclusions aux derivées partielles, C.R. Acad. Sci. Paris Sér. I, 312 (1991), 271-276. Zbl0722.35052MR1089713
  11. [11] J.-P. Aubin - H. Frankowska, (to appear) Viability Kernels of Control Systems, in Nonlinear Synthesis, Eds. Byrnes & Kurzhanski, Birkhäuser. MR1132731
  12. [12] J.-P. Aubin - H. Frankowska, Partial Differential Inclusions Governing Feedback Controls, IIASA WP-90-028 (1990). MR1084041
  13. [13] Y. Brenier, Averaged Multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal., 21 (1984), 1013-1037. Zbl0565.65054MR765504
  14. [14] C.I. Byrnes - A. Isidori, Feedback Design From the Zero Dynamics Point of View, in Computation and Control, Bowers K. & Lund J. Eds., Birkhäuser (1989), 23-52. Zbl0703.93057MR1046843
  15. [15] C.I. Byrnes - A. Isidori, Output Regulation of Nonlinear Systems, IEEE Trans. Automat. Control, 35 (1990), 131-140. Zbl0704.93034MR1038409
  16. [16] C.I. Byrnes - A. Isidori. (to appear) Asymptotic Stabilization of Minimum Phase Nonlinear Systems, Preprint. MR1125894
  17. [17] P. Cannarsa - G. Da Prato, (to appear) Direct Solutions of a Second-Order Hamilton-Jacobi Equation in Hilbert Spaces, Preprint. Zbl0805.49016MR1222689
  18. [18] J. Carr, Applications of Centre Manifold Theory, Springer Verlag (1981). Zbl0464.58001MR635782
  19. [19] G. Da Prato - A. Lunardi, Stability, Instability and Center Manifold Theorem for Fully Nonlinear Autonomous Parabolic Equations in Banach Spaces, Arch. Rational Mech. Anal., 101 (1988), 115-141. Zbl0661.35044MR921935
  20. [20] H. Frankowska, L'équation d'Hamilton-Jacobi contingente, C.R. Acad. Sci. Paris Sér. I, 304 (1987), 295-298. Zbl0612.49023MR886727
  21. [21] H. Frankowska, Optimal trajectories associated to a solution of contingent Hamilton-Jacobi Equations, Appl. Math. Optim., 19 (1989), 291-311. Zbl0672.49023MR974188
  22. [22] H. Frankowska, Nonsmooth solutions of Hamilton-Jacobi-Bellman Equations, Proceedings of the International Conference Bellman Continuum, Antibes, France, June 13-14, 1988, Lecture Notes in Control and Inform. Sci., Springer Verlag (1989). Zbl0762.49011MR1231118
  23. [23] H. Frankowska, (to appear) Control of Nonlinear Systems and Differential Inclusions, Birkhäuser, Boston, Basel, Berlin. 
  24. [24] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman (1982). Zbl0497.35001MR667669
  25. [25] P.-L. Lions - P. Souganidis, (to appear). 
  26. [26] A. Lunardi, Existence in the small and in the large in fully nonlinear parabolic equations, in Differential Equations and Applications, Ed. Aftabizadeh, OhioUniversity Press (1988). Zbl0727.35072MR1026215

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.