On a new class of generalized solutions for the Stokes equations in exterior domains

Hideo Kozono; Hermann Sohr

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)

  • Volume: 19, Issue: 2, page 155-181
  • ISSN: 0391-173X

How to cite

top

Kozono, Hideo, and Sohr, Hermann. "On a new class of generalized solutions for the Stokes equations in exterior domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.2 (1992): 155-181. <http://eudml.org/doc/84121>.

@article{Kozono1992,
author = {Kozono, Hideo, Sohr, Hermann},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Stokes paradox; Dirichlet integral; existence; uniqueness},
language = {eng},
number = {2},
pages = {155-181},
publisher = {Scuola normale superiore},
title = {On a new class of generalized solutions for the Stokes equations in exterior domains},
url = {http://eudml.org/doc/84121},
volume = {19},
year = {1992},
}

TY - JOUR
AU - Kozono, Hideo
AU - Sohr, Hermann
TI - On a new class of generalized solutions for the Stokes equations in exterior domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 2
SP - 155
EP - 181
LA - eng
KW - Stokes paradox; Dirichlet integral; existence; uniqueness
UR - http://eudml.org/doc/84121
ER -

References

top
  1. [1] R.A. Adams, Sobolev spaces, New York-San Francisco -London, Academic Press1977. Zbl0314.46030MR450957
  2. [2] N. Aronszajn - E. Gagliardo, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl.68, 51-117 (1965). Zbl0195.13102MR226361
  3. [3] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge, University Press1970. Zbl0958.76001MR1744638
  4. [4] J. Bergh - J. Löfström, Interpolation spaces, Berlin-Heidelberg -New York, Springer1976. Zbl0344.46071MR482275
  5. [5] M.E. Bogovskii, Solution of the first boundary value problem for the equation of continuity of an incompressible medium, Soviet Math. Dokl.20, 1094-1098 (1979). Zbl0499.35022MR553920
  6. [6] M.E. Bogovskii, Solution of some vector analysis problems connected with operators div and grad (in Russian). Trudy Seminar S.L. Sobolev, No. 1, 80, Sibirsk. Mat. Zh., 5-40 (1980). Zbl0479.58018MR631691
  7. [7] W. Borchers - T. Miyakawa, Algebraic L2-decay for Navier-Stokes flows in exterior domains, Acta Math.165, 189-227 (1990). Zbl0722.35014MR1075041
  8. [8] W. Borchers - H. Sohr, On the semi-group of the Stokes operator for exterior domains in Lq-spaces, Math. Z.196, 415-425 (1987). Zbl0636.76027MR913666
  9. [9] W. Borchers - H. Sohr, On the equations rot v = g and div u = f with zero boundary conditions, Hokkaido Math. J.19, 67-87 (1990). Zbl0719.35014MR1039466
  10. [10] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ.Padova31, 308-340 (1961). Zbl0116.18002MR138894
  11. [11] I.D. Chang - R. Finn, On the solutions of a class of equations occurring in continuum mechanics with application to the Stokes paradox, Arch. Rational Mech. Anal.7, 388-401 (1961). Zbl0104.42401MR123803
  12. [12] A. Einstein, Eine neue Bestimmung der Moleküldimension, Ann. Physik19, 289-307 (1906). Zbl37.0811.01JFM37.0811.01
  13. [13] R. Finn - D.R. Smith, On the linearized hydrodynamical equation in two-dimensions, Arch. Rational Mech. Anal.25, 1-25 (1967). Zbl0152.45001MR211668
  14. [14] R. Finn, Mathematical questions relating to viscous fluid flow in an exterior domain, Rocky Mountain J. Math.3, 107-140 (1973). Zbl0261.35068MR327146
  15. [15] A. Friedman, Partial differential equations, New York: Holt Rinehart & Winston1969. Zbl0224.35002MR445088
  16. [16] H. Fujita, On the existence and regularity of steady state solutions of the Navier-Stokes equations, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 9, 59-102 (1961). Zbl0111.38502MR132307
  17. [17] G. Galdi - P. Maremonti, Monotonic decreasing and asymptotic behaviour of kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains, Arch. Rational Mech. Anal.94, 254-266 (1986). Zbl0617.35108MR846064
  18. [18] G. Galdi - C.G. Simader, Existence, uniqueness and Lq-estimates for the Stokes problem in an exterior domain, Arch. Rational Mech. Anal.112, 291-318 (1990). Zbl0722.35065MR1077262
  19. [19] Y. Giga - H. Sohr, On the Stokes operator in exterior domains, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 36, 103-130 (1989). MR991022
  20. [20] J.G. Heywood, On some paradox concerning two-dimensional Stokes flow past an obstacle, Indiana Univ. Math. J.24, 443-450 (1974). Zbl0315.35075MR410123
  21. [21] J.G. Heywood, On uniqueness questions in the theory of viscous flow, Acta Math.136, 61-102 (1976). Zbl0347.76016MR425390
  22. [22] H. Kozono - H. Sohr, New a priori estimates for the Stokes equations in exterior domains, Indiana Univ. Math. J.41, 1-27 (1991). Zbl0732.35068MR1101219
  23. [23] L.D. Landau - E.M. Lifschitz, Fluid Mechanics, Course of Theoretical Physics, Oxford, Pergamon Press1987. Zbl0655.76001MR961259
  24. [24] J.L. Lions - E. Magenes, Non-homogeneous boundary value problems and applications I, Berlin-Heidelberg-New York, Springer1972. Zbl0223.35039
  25. [25] V.N. Maslennikova - M.A. Timoshin, On the Lp-theory for the Stokes problem in unbounded domains with compact boundary, Soviet Math. Dokl.42, 197-201 (1991). Zbl0728.76031MR1080036
  26. [26] T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in exterior domains, Hiroshima Math. J.12, 115-140 (1982). Zbl0486.35067MR647234
  27. [27] M. Reed - B. Simon, Method of Modem Mathematical Physics II. New York- San Francisco-London, Academic Press1975. Zbl0308.47002MR493420
  28. [28] C.G. Simader, Private communication, 1988. 
  29. [29] C.G. Simader - H. Sohr, A new approach to the Helmholtz decomposition in Lq-spaces for bounded and exterior domains, to appear in " Mathematical Problems Relating to the Navier-Stokes Equations", series on Advanced in Mathematics for Applied Sciences, vol. 11, World Scientific, 1992. Zbl0791.35096MR1190728
  30. [30] H. Sohr - W. Varnhorn, On decay properties of the Stokes equations in exterior domains, Lecture Notes in Math. no. 1431 Heywood, J.G., et al. eds., Proceedings, Obelwolfach 1988, Berlin-Heidelberg- New York, Springer134-151 (1990). Zbl0719.35069MR1072184
  31. [31] R. Temam, Navier-Stokes equations, Amsterdam, North-Holland1977. Zbl0383.35057MR769654
  32. [32] H. Triebel, Interpolation theory, function spaces, differential operators, Amsterdam, North-Holland1978. Zbl0387.46032MR503903
  33. [33] K. Yosida, Functional analysis, Berlin-Heidelberg -New York, Springer1965. Zbl0126.11504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.