Vanishing theorems for twistor spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)
- Volume: 19, Issue: 2, page 183-205
- ISSN: 0391-173X
Access Full Article
topHow to cite
topNannicini, Antonella. "Vanishing theorems for twistor spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.2 (1992): 183-205. <http://eudml.org/doc/84122>.
@article{Nannicini1992,
author = {Nannicini, Antonella},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {cohomology; Dirac operator; twistor space; torus},
language = {eng},
number = {2},
pages = {183-205},
publisher = {Scuola normale superiore},
title = {Vanishing theorems for twistor spaces},
url = {http://eudml.org/doc/84122},
volume = {19},
year = {1992},
}
TY - JOUR
AU - Nannicini, Antonella
TI - Vanishing theorems for twistor spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 2
SP - 183
EP - 205
LA - eng
KW - cohomology; Dirac operator; twistor space; torus
UR - http://eudml.org/doc/84122
ER -
References
top- [1] M.F. Atiyah - N.J. Hitchin - I.M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A362, 425-461, 1978. Zbl0389.53011MR506229
- [2] A.L. Besse, Einstein manifolds, Springer Verlag, 1987. Zbl0613.53001MR867684
- [3] J.M. Bismut, Le théorème d'indice local pour des variétés non kählériennes, C.R. Acad. Sci. Paris Sér. I t. 308, 139-142, 1989. Zbl0661.53050MR983667
- [4] J.M. Bismut, Local index theorem for non kähler manifolds and equivariant Bott-Chern currents, Prépublications Orsay, n. 88-41, 1988. MR983667
- [5] P. De Bartolomeis, Generalized Twistor Spaces and application, Seminari di Geometria Università di Bologna Dip. di Mat., 23-32, 1985. Zbl0611.53060MR877533
- [6] P. De Bartolomeis - L. Migliorini, Aspects of Mathematics, Klas Diederich (Ed.) Complex Analysis Dedicated to H. Grauert, Proc. of the Int. Workshop Wuppertal, 33-39, 1990. Zbl0733.53020MR1122156
- [7] P. De Bartolomeis - L. Migliorini A. Nannicini, Espace de twisteurs kählériens, C.R. Acad. Sci. Paris Sér. I t. 307, 259-261, 1989. Zbl0645.53024MR956818
- [8] P. De Bartolomeis - A. Nannicini, Handbook of Twistor Geometry, (to appear).
- [9] S. Helgason, Differential geometry Lie groups and symmetric spaces, Academic PressNew York, 1978. Zbl0451.53038MR514561
- [10] N.J. Hitchin, Harmonic spinors, Adv. in Math., 14, 1-55, 1974. Zbl0284.58016MR358873
- [11] N.J. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43, 133-150, 1981. Zbl0474.14024MR623721
- [12] N.J. Hitchin, Linear field equations on self-dual spaces, Proc. Roy. Soc. London Ser. A370, 173-191, 1980. Zbl0436.53058MR563832
- [13] A. Gray - M. Barros - M. Naveira L.VANHECKE, The Chern numbers of holomorphic vector bundles and formally holomorphic connections of complex vector bundles over almost complex manifolds, Jurnal für Mathematik314, 84-98, 1979. Zbl0432.53050MR555906
- [14] W. Greub, Multilinear Algebra, Springer-Verlag, 1978. Zbl0387.15001MR504976
- [15] H. Lawson BlaineJr. - M.L. Michelshon, Spin Geometry, Princeton Mathematical Series, 38, 1990. Zbl0688.57001
- [16] J.W. Milnor - J.D. Stasheff, Characteristic Classes, Ann. of Math. Stud.76, Princeton University Press, Princeton, 1974. Zbl0298.57008MR440554
- [17] A. Nannicini, Introduzione allo studio della geometria spinoriale, Seminari dell'Istituto di Matematica Applicata G. Sansone Univ. di Firenze, 1989.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.