Vanishing theorems for twistor spaces

Antonella Nannicini

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)

  • Volume: 19, Issue: 2, page 183-205
  • ISSN: 0391-173X

How to cite

top

Nannicini, Antonella. "Vanishing theorems for twistor spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.2 (1992): 183-205. <http://eudml.org/doc/84122>.

@article{Nannicini1992,
author = {Nannicini, Antonella},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {cohomology; Dirac operator; twistor space; torus},
language = {eng},
number = {2},
pages = {183-205},
publisher = {Scuola normale superiore},
title = {Vanishing theorems for twistor spaces},
url = {http://eudml.org/doc/84122},
volume = {19},
year = {1992},
}

TY - JOUR
AU - Nannicini, Antonella
TI - Vanishing theorems for twistor spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 2
SP - 183
EP - 205
LA - eng
KW - cohomology; Dirac operator; twistor space; torus
UR - http://eudml.org/doc/84122
ER -

References

top
  1. [1] M.F. Atiyah - N.J. Hitchin - I.M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A362, 425-461, 1978. Zbl0389.53011MR506229
  2. [2] A.L. Besse, Einstein manifolds, Springer Verlag, 1987. Zbl0613.53001MR867684
  3. [3] J.M. Bismut, Le théorème d'indice local pour des variétés non kählériennes, C.R. Acad. Sci. Paris Sér. I t. 308, 139-142, 1989. Zbl0661.53050MR983667
  4. [4] J.M. Bismut, Local index theorem for non kähler manifolds and equivariant Bott-Chern currents, Prépublications Orsay, n. 88-41, 1988. MR983667
  5. [5] P. De Bartolomeis, Generalized Twistor Spaces and application, Seminari di Geometria Università di Bologna Dip. di Mat., 23-32, 1985. Zbl0611.53060MR877533
  6. [6] P. De Bartolomeis - L. Migliorini, Aspects of Mathematics, Klas Diederich (Ed.) Complex Analysis Dedicated to H. Grauert, Proc. of the Int. Workshop Wuppertal, 33-39, 1990. Zbl0733.53020MR1122156
  7. [7] P. De Bartolomeis - L. Migliorini A. Nannicini, Espace de twisteurs kählériens, C.R. Acad. Sci. Paris Sér. I t. 307, 259-261, 1989. Zbl0645.53024MR956818
  8. [8] P. De Bartolomeis - A. Nannicini, Handbook of Twistor Geometry, (to appear). 
  9. [9] S. Helgason, Differential geometry Lie groups and symmetric spaces, Academic PressNew York, 1978. Zbl0451.53038MR514561
  10. [10] N.J. Hitchin, Harmonic spinors, Adv. in Math., 14, 1-55, 1974. Zbl0284.58016MR358873
  11. [11] N.J. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43, 133-150, 1981. Zbl0474.14024MR623721
  12. [12] N.J. Hitchin, Linear field equations on self-dual spaces, Proc. Roy. Soc. London Ser. A370, 173-191, 1980. Zbl0436.53058MR563832
  13. [13] A. Gray - M. Barros - M. Naveira L.VANHECKE, The Chern numbers of holomorphic vector bundles and formally holomorphic connections of complex vector bundles over almost complex manifolds, Jurnal für Mathematik314, 84-98, 1979. Zbl0432.53050MR555906
  14. [14] W. Greub, Multilinear Algebra, Springer-Verlag, 1978. Zbl0387.15001MR504976
  15. [15] H. Lawson BlaineJr. - M.L. Michelshon, Spin Geometry, Princeton Mathematical Series, 38, 1990. Zbl0688.57001
  16. [16] J.W. Milnor - J.D. Stasheff, Characteristic Classes, Ann. of Math. Stud.76, Princeton University Press, Princeton, 1974. Zbl0298.57008MR440554
  17. [17] A. Nannicini, Introduzione allo studio della geometria spinoriale, Seminari dell'Istituto di Matematica Applicata G. Sansone Univ. di Firenze, 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.