Folded shells : a variational approach

Danilo Percivale

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)

  • Volume: 19, Issue: 2, page 207-221
  • ISSN: 0391-173X

How to cite

top

Percivale, Danilo. "Folded shells : a variational approach." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.2 (1992): 207-221. <http://eudml.org/doc/84123>.

@article{Percivale1992,
author = {Percivale, Danilo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {regular part; singular part; convergence; minimizing sequence},
language = {eng},
number = {2},
pages = {207-221},
publisher = {Scuola normale superiore},
title = {Folded shells : a variational approach},
url = {http://eudml.org/doc/84123},
volume = {19},
year = {1992},
}

TY - JOUR
AU - Percivale, Danilo
TI - Folded shells : a variational approach
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 2
SP - 207
EP - 221
LA - eng
KW - regular part; singular part; convergence; minimizing sequence
UR - http://eudml.org/doc/84123
ER -

References

top
  1. [1] E. Acerbi - G. Buttazzo - D. Percivale, Thin inclusions in linear elasticity; a variational approach, J. Reine Angew. Math.300 (1988), pp. 1-16. Zbl0633.73021MR936993
  2. [2] D. Caillerie, The effect of a thin inclusion of high rigidity in an elastic body, Math. Methods Appl. Sci.2 (1980), pp. 251-270. Zbl0446.73014MR581205
  3. [3] P.G. Ciarlet - P. Destuynder, A justification of the two-dimensional linear plate model, J. Méc. Théor. Appl.18 (1979), pp. 315-344. Zbl0415.73072MR533827
  4. [4] P.G. Ciarlet - H. Le Dret - R. Nzengwa, Modelisation de la jonction entre un corps élastique tridimensionnel et une plaque, C.R. Acad. Sci. Paris Sér. I Math.305 (1987), pp. 55-58. Zbl0632.73015MR902275
  5. [5] P.G. Ciarlet - H. Le Dret, Justification de la condition aux limite d'encastrement d'une plaque par une méthode asymptotique, C.R. Acad. Sci. Paris Sér. I Math.307 (1988), pp. 1015-1018. Zbl0679.73008MR978264
  6. [6] E. De Giorgi - G. Dal Maso, Γ-convergence and Calculus of Variations, Lecture Notes in Math.979, Springer Verlag. (1983). Zbl0511.49007
  7. [7] M.P. D, Differential geometry of curves and surfaces, Englewood-Cliff. (1976). Zbl0326.53001
  8. [8] I. Ekeland - R. Temam, Convex Analysis and Variational problems, North Holland (1976). Zbl0322.90046MR463994
  9. [9] R.V. Kohn - M. Vogelius, A new model for thin plates with rapidly varying thichness II; a convergence proof, Quart. Appl. Math.43 (1985), pp. 1-23. Zbl0565.73046MR782253
  10. [10] H. Le Dret, Modelisation d'une plaque pliee, (preprint). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.