On 3-folds in which are scrolls
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)
- Volume: 19, Issue: 3, page 451-471
- ISSN: 0391-173X
Access Full Article
topHow to cite
topOttaviani, Giorgio. "On 3-folds in $\mathbb {P}^5$ which are scrolls." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.3 (1992): 451-471. <http://eudml.org/doc/84132>.
@article{Ottaviani1992,
author = {Ottaviani, Giorgio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {3-folds; scrolls over a surface; curve section},
language = {eng},
number = {3},
pages = {451-471},
publisher = {Scuola normale superiore},
title = {On 3-folds in $\mathbb \{P\}^5$ which are scrolls},
url = {http://eudml.org/doc/84132},
volume = {19},
year = {1992},
}
TY - JOUR
AU - Ottaviani, Giorgio
TI - On 3-folds in $\mathbb {P}^5$ which are scrolls
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 3
SP - 451
EP - 471
LA - eng
KW - 3-folds; scrolls over a surface; curve section
UR - http://eudml.org/doc/84132
ER -
References
top- [1] A.B. Aure, On surfaces in projective 4-space, Thesis, Oslo1987.
- [2] R. Braun - G. Ottaviani - M. Schneider - F.O. Schreyer, Boundedness for non-general type 3-folds in P5, to appear in the Proceedings of CIRM Meeting "Analysis and Geometry X", Trento1991.
- [3] R. Braun - G. Ottaviani - M. Schneider - F.O. Schreyer, Classification of log-special 3-folds in P5, to appear.
- [4] M. Beltrametti - A.J. Sommese, Comparing the classical and the adjunction theoretic definition of scrolls, to appear in the Proceedings of the 1990 Cetraro Conference "Geometry of Complex Projective Varieties". Zbl0937.14027MR1225588
- [5] M. Beltrametti - A.J. Sommese, New properties of special varieties arising from adjunction theory, J. Math. Soc. Japan43, 381-412 (1991). Zbl0754.14027MR1096439
- [6] M. Beltrametti - M. Schneider - A.J. Sommese, Threefolds of degree 9 and 10 in P5, Math. Ann.288, 613-644 (1990). Zbl0723.14033MR1079870
- [7] G. Castelnuovo, Ricerche di geometria della retta nello spazio a quattro dimensioni, Atti R. Ist. Veneto Sc., ser. VII, 2, 855-901 (1891). Zbl23.0865.01JFM23.0865.01
- [8] M.C. Chang, A filtered Bertini-type theorem, J. Reine Angew. Math.397, 214-219 (1989). Zbl0663.14008MR993224
- [9] M.C. Chang, Classification of Buchsbaum subvarieties of codimension 2 in projective space, J. Reine Angew. Math.401, 101-112 (1989). Zbl0672.14026MR1018055
- [10] G. Ellingsrud - C. Peskine, Sur les surfaces lisses de P4, Invent. Math.95, 1-11 (1989). Zbl0676.14009MR969410
- [11] W. Fulton, Intersection theory, Springer, Berlin1984. Zbl0541.14005MR732620
- [12] M. Fiorentini - A.T. Lascu, Una formula di geometria numerativa, Ann. Univ. Ferrara, Sez. VII, 27, 201-227 (1981). Zbl0513.14036MR653873
- [13] A. Holme - H. Roberts, On the embeddings of Projective Varieties, Lecture Notes in Math. 1311, 118-146, Springer, Berlin1988. Zbl0663.14009MR951644
- [14] S.L. Kleiman, Geometry on Grassmannians and applications to splitting bundles and smoothing cycles, Publ. Math. IHES36, 281-297 (1969). Zbl0208.48501MR265371
- [15] A. Lanteri, On the existence of scrolls in P4, Atti Accad. Naz. Lincei (8) 69, 223-227 (1980). Zbl0509.14042MR670824
- [16] A. Lanteri - C. Turrini, Some formulas concerning nonsingular algebraic varieties embedded in some ambient variety, Atti Accad. Sci. Torino116, 463-474 (1982). Zbl0606.14009MR840740
- [17] N.Y. Netsvetaev, Projective varieties defined by small number of equations are complete intersections, in "Topology and geometry", Rohlin Sem. 1984-1986, Lecture Notes in Math. 1346, 433-453, Springer, Berlin1988. Zbl0664.14028MR970088
- [18] C. Okonek, Über 2-codimensionale Untermannigfaltigkeiten vom Grad 7 in P4 und P5, Math. Z.187, 209-219 (1984). Zbl0575.14030MR753433
- [19] C. Okonek - M. Schneider - H. Spindler, Vector bundles on complex projective spaces, Birkhäuser, Boston1980. Zbl0438.32016MR561910
- [20] F. Palatini, Sui sistemi lineari di complessi lineari di rette nello spazio a cinque dimensioni, Atti Ist. Veneto, 602, 371-383 (1900). Zbl32.0553.04JFM32.0553.04
- [21] C. Peskine - L. Szpiro, Liaison des variétés algébriques I, Invent. Math.26, 271-302 (1974). Zbl0298.14022MR364271
- [22] M. Schneider, Vector bundles and low-codimensional submanifolds of projective space: a problem list, Topics in algebra. Banach Center Publications, vol. 26, PWN Polish Scientific Publishers, Warsaw1989. Zbl0739.14004MR1171271
- [23] A.J. Sommese, On the adjunction theoretic structure of projective varieties, in "Complex Analysis and Algebraic Geometry", Proceedings Göttingen 1985, Lecture Notes in Math. 1194, 175-213, Springer, Berlin1986. Zbl0601.14029MR855885
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.