The moment-condition for the free boundary problem for functions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)
- Volume: 20, Issue: 2, page 313-322
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAĭzenberg, L. A., and Rea, C.. "The moment-condition for the free boundary problem for $CR$ functions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.2 (1993): 313-322. <http://eudml.org/doc/84150>.
@article{Aĭzenberg1993,
author = {Aĭzenberg, L. A., Rea, C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {CR functions; free boundary; moment condition},
language = {eng},
number = {2},
pages = {313-322},
publisher = {Scuola normale superiore},
title = {The moment-condition for the free boundary problem for $CR$ functions},
url = {http://eudml.org/doc/84150},
volume = {20},
year = {1993},
}
TY - JOUR
AU - Aĭzenberg, L. A.
AU - Rea, C.
TI - The moment-condition for the free boundary problem for $CR$ functions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 2
SP - 313
EP - 322
LA - eng
KW - CR functions; free boundary; moment condition
UR - http://eudml.org/doc/84150
ER -
References
top- [1] L.A. A, On the possibility of holomorphic continuation from a part of the boundary of a domain to the whole domain. A generalization of the theorem of Fock-Kuni, Complex analysis and mathematical physic, Krasnoyarsk, 5-11 (1980) (Russian).
- [2] L.A. A, Carleman formulas in complex analysis. First application "Nauka", Novosibirsk1990, (Russian). Zbl0743.32002
- [3] L.A. A - A.M. Kytmanov, On the holomorphic extendability of functions given on a connected part of a boundary, Mat. Sb., 4, 490-507 (1991) (Russian). Zbl0741.30002
- [4] L.A. A, Simple conditions for holomorphic continuation from a part of the boundary of a convex domain to the whole domain, preprint, Dept. of Math., Royal Institute of technology, 5-10044Stockholm, Sweden, 7 (1991).
- [5] L.A. A - A.M. Kytmanov, On the holomorphic extendability of functions given on a connected part of a boundary, II, preprint, RomaTor Vergata, 14 (1991).
- [6] A. Andreotti - D. Hill, F.E. Levi convexity and the Hans Levy problem, Part I and II, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 26, 325-363 and 747-806 (1972). Zbl0283.32013
- [7] V.A. Fock - F.M. Kuni, On the introduction of a "annihilating" function in the dispersion equations of gases, Dokl. Akad. Nauk SSSR, 127:6, 1195-1198 (1959) (Russian). Zbl0092.45501
- [8] L. Hörmander, An Introduction to complex analysis in several variables, Van Nostrand1966. Zbl0138.06203MR203075
- [9] O.V. Karepov - N.N. Tarkhanov, The Cauchy problem for holomorphic functions of Hardy class H2, preprint 53M, Institut Fiziki 50 AN SSSR, Krasnoyarsk, 21 (1990) (Russian).
- [10] M.G. Kre - P. Ya Nudelman, On some new problems for Hardy class functions and continuous families of functions with double orthogonality, Soviet Math. Dokl.14:2 (1973). Zbl0294.30027
- [11] N.I. Muskhelishvili, Singular integral equations, P. Noordhoff N.V - Groningen- Holland, 435, (1953). Zbl0051.33203MR355494
- [12] D.I. Patil, Representation of Hp functions, Bull. Amer. Math. Soc., 78:4, 617-620 (1972). Zbl0255.30010MR298017
- [13] J. Plemelj, Ein Ergänzungssatz für Cauchyschen Integraldarstellung analytischer Funktionen, Randwerte betreffend, Monatshefte für Math. u. Phys.XIX, 211-245 (1908). Zbl39.0460.01JFM39.0460.01
- [14] B.A. Shaimkulov, Conditions for the solution of the Cauchy problem for holomorphic functions, Proc. Conf. of geometric theory of functions, Novosibirsk, 1988. Zbl0739.32003
- [15] A. Steiner, Abschnitte von Randfunktionen beschränkter Analytischer Funktionen, Lecture Notes in Math.419, 342-351, (1974). Zbl0298.30029MR507895
- [16] L.N. Znamenskaya, Conditions for the holomorphic extension of functions of class L2 given on a part of the Shilov boundary of circular, starshaped domains, Sibirsk. Mat. Zh., 31:3 (1990). Zbl0733.32007MR1088930
- [ 17] G. Zin, Esistenza e rappresentazione di funzioni analitiche, le quali, su una curva di Jordan, si riducono ad una funzione assegnata, Ann. Mat. Pura Appl.34, 365-405 (1953). Zbl0051.30902MR55436
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.