The moment-condition for the free boundary problem for C R functions

L. A. Aĭzenberg; C. Rea

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 2, page 313-322
  • ISSN: 0391-173X

How to cite

top

Aĭzenberg, L. A., and Rea, C.. "The moment-condition for the free boundary problem for $CR$ functions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.2 (1993): 313-322. <http://eudml.org/doc/84150>.

@article{Aĭzenberg1993,
author = {Aĭzenberg, L. A., Rea, C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {CR functions; free boundary; moment condition},
language = {eng},
number = {2},
pages = {313-322},
publisher = {Scuola normale superiore},
title = {The moment-condition for the free boundary problem for $CR$ functions},
url = {http://eudml.org/doc/84150},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Aĭzenberg, L. A.
AU - Rea, C.
TI - The moment-condition for the free boundary problem for $CR$ functions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 2
SP - 313
EP - 322
LA - eng
KW - CR functions; free boundary; moment condition
UR - http://eudml.org/doc/84150
ER -

References

top
  1. [1] L.A. A, On the possibility of holomorphic continuation from a part of the boundary of a domain to the whole domain. A generalization of the theorem of Fock-Kuni, Complex analysis and mathematical physic, Krasnoyarsk, 5-11 (1980) (Russian). 
  2. [2] L.A. A, Carleman formulas in complex analysis. First application "Nauka", Novosibirsk1990, (Russian). Zbl0743.32002
  3. [3] L.A. A - A.M. Kytmanov, On the holomorphic extendability of functions given on a connected part of a boundary, Mat. Sb., 4, 490-507 (1991) (Russian). Zbl0741.30002
  4. [4] L.A. A, Simple conditions for holomorphic continuation from a part of the boundary of a convex domain to the whole domain, preprint, Dept. of Math., Royal Institute of technology, 5-10044Stockholm, Sweden, 7 (1991). 
  5. [5] L.A. A - A.M. Kytmanov, On the holomorphic extendability of functions given on a connected part of a boundary, II, preprint, RomaTor Vergata, 14 (1991). 
  6. [6] A. Andreotti - D. Hill, F.E. Levi convexity and the Hans Levy problem, Part I and II, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 26, 325-363 and 747-806 (1972). Zbl0283.32013
  7. [7] V.A. Fock - F.M. Kuni, On the introduction of a "annihilating" function in the dispersion equations of gases, Dokl. Akad. Nauk SSSR, 127:6, 1195-1198 (1959) (Russian). Zbl0092.45501
  8. [8] L. Hörmander, An Introduction to complex analysis in several variables, Van Nostrand1966. Zbl0138.06203MR203075
  9. [9] O.V. Karepov - N.N. Tarkhanov, The Cauchy problem for holomorphic functions of Hardy class H2, preprint 53M, Institut Fiziki 50 AN SSSR, Krasnoyarsk, 21 (1990) (Russian). 
  10. [10] M.G. Kre - P. Ya Nudelman, On some new problems for Hardy class functions and continuous families of functions with double orthogonality, Soviet Math. Dokl.14:2 (1973). Zbl0294.30027
  11. [11] N.I. Muskhelishvili, Singular integral equations, P. Noordhoff N.V - Groningen- Holland, 435, (1953). Zbl0051.33203MR355494
  12. [12] D.I. Patil, Representation of Hp functions, Bull. Amer. Math. Soc., 78:4, 617-620 (1972). Zbl0255.30010MR298017
  13. [13] J. Plemelj, Ein Ergänzungssatz für Cauchyschen Integraldarstellung analytischer Funktionen, Randwerte betreffend, Monatshefte für Math. u. Phys.XIX, 211-245 (1908). Zbl39.0460.01JFM39.0460.01
  14. [14] B.A. Shaimkulov, Conditions for the solution of the Cauchy problem for holomorphic functions, Proc. Conf. of geometric theory of functions, Novosibirsk, 1988. Zbl0739.32003
  15. [15] A. Steiner, Abschnitte von Randfunktionen beschränkter Analytischer Funktionen, Lecture Notes in Math.419, 342-351, (1974). Zbl0298.30029MR507895
  16. [16] L.N. Znamenskaya, Conditions for the holomorphic extension of functions of class L2 given on a part of the Shilov boundary of circular, starshaped domains, Sibirsk. Mat. Zh., 31:3 (1990). Zbl0733.32007MR1088930
  17. [ 17] G. Zin, Esistenza e rappresentazione di funzioni analitiche, le quali, su una curva di Jordan, si riducono ad una funzione assegnata, Ann. Mat. Pura Appl.34, 365-405 (1953). Zbl0051.30902MR55436

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.