Instability phenomena for the moment problem
Lev Aizenberg; Lawrence Zalcman
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)
- Volume: 22, Issue: 1, page 95-107
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [A1] L. Aizenberg, Carleman's Formulas in Complex Analysis. Kluwer Acad. Publ., Dordrecht, 1993. Zbl0783.32002MR1256735
- [A2] L. Aizenberg, Variations on the theorem of Morera and the problem of Pompeiu. Dokl. Akad. Nauk (1994) (to appear). Zbl0848.30003
- [AM] L.A. Aizenberg - B.C. Mityagin, The spaces of functions analytic in multicircular domains. Sibirsk. Mat. Zh.1 (1960), 153-170, (Russian). Zbl0168.32704MR124526
- [AR] L.A. Aizenberg - C. Rea, The moment-condition for the free boundary problem for CR functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 20 (1993), 313-322. Zbl0787.32021MR1233640
- [BCPZ] C. Berenstein - D.C. Chang - D. Pascuas - L. Zalcman, Variations on the theorem of Morera. Contemp. Math.137 (1992), 63-78. Zbl0769.32001MR1190970
- [Br] M. Brelot, Sur l'approximation et la convergence dans le théorie des fonctions harmoniques ou holomorphes. Bull. Soc. Math. France73 (1945), 55-70. Zbl0061.22804MR13824
- [Bu] R.B. Burckel, An Introduction to Classical Complex Analysis. Birkhäuser Verlag, Boston, 1979.
- [D] J. Deny, Systèmes totaux de fonctions harmoniques. Ann. Inst. Fourier1 (1949), 103-112. MR37414
- [F] B.A. Fuks, Introduction to the Theory of Analytic Functions of Several Complex Variables. Amer. Math. Soc.Providence RI, 1963. Zbl0138.30902MR168793
- [L] N.S. Landkof, Foundations of Potential Theory. Springer-Verlag, Berlin, 1972. Zbl0253.31001MR350027
- [Ro] H. Rossi, Holomorphically convex sets in several complex variables. Ann. Math. (2) 74 (1961), 470-493. Zbl0107.28601MR133479
- [Ru] W. Rudin, Functional Analysis. McGraw-Hill, New York, 1973. Zbl0253.46001MR365062
- [Z1] L. Zalcman, Analytic Capacity and Rational Approximation. Springer-Verlag, Berlin, 1968. Zbl0171.03701MR227434
- [Z2] L. Zalcman, Offbeat integral geometry. Amer. Math. Monthly87 (1980), 161-175. Zbl0433.53048MR562919
- [Z3] L. Zalcman, A bibliographic survey of the Pompeiu problem. In: "Approximation by Solutions of Partial Differential Equations" (B. Fuglede et al, eds.), Kluwer Acad. Publ., Dordrecht, 1992, pp. 185-194. Zbl0830.26005MR1168719