Instability phenomena for the moment problem

Lev Aizenberg; Lawrence Zalcman

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 1, page 95-107
  • ISSN: 0391-173X

How to cite

top

Aizenberg, Lev, and Zalcman, Lawrence. "Instability phenomena for the moment problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.1 (1995): 95-107. <http://eudml.org/doc/84201>.

@article{Aizenberg1995,
author = {Aizenberg, Lev, Zalcman, Lawrence},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {moment problem; uniqueness theorem; complex Borel measure; harmonic moments},
language = {eng},
number = {1},
pages = {95-107},
publisher = {Scuola normale superiore},
title = {Instability phenomena for the moment problem},
url = {http://eudml.org/doc/84201},
volume = {22},
year = {1995},
}

TY - JOUR
AU - Aizenberg, Lev
AU - Zalcman, Lawrence
TI - Instability phenomena for the moment problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 1
SP - 95
EP - 107
LA - eng
KW - moment problem; uniqueness theorem; complex Borel measure; harmonic moments
UR - http://eudml.org/doc/84201
ER -

References

top
  1. [A1] L. Aizenberg, Carleman's Formulas in Complex Analysis. Kluwer Acad. Publ., Dordrecht, 1993. Zbl0783.32002MR1256735
  2. [A2] L. Aizenberg, Variations on the theorem of Morera and the problem of Pompeiu. Dokl. Akad. Nauk (1994) (to appear). Zbl0848.30003
  3. [AM] L.A. Aizenberg - B.C. Mityagin, The spaces of functions analytic in multicircular domains. Sibirsk. Mat. Zh.1 (1960), 153-170, (Russian). Zbl0168.32704MR124526
  4. [AR] L.A. Aizenberg - C. Rea, The moment-condition for the free boundary problem for CR functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 20 (1993), 313-322. Zbl0787.32021MR1233640
  5. [BCPZ] C. Berenstein - D.C. Chang - D. Pascuas - L. Zalcman, Variations on the theorem of Morera. Contemp. Math.137 (1992), 63-78. Zbl0769.32001MR1190970
  6. [Br] M. Brelot, Sur l'approximation et la convergence dans le théorie des fonctions harmoniques ou holomorphes. Bull. Soc. Math. France73 (1945), 55-70. Zbl0061.22804MR13824
  7. [Bu] R.B. Burckel, An Introduction to Classical Complex Analysis. Birkhäuser Verlag, Boston, 1979. 
  8. [D] J. Deny, Systèmes totaux de fonctions harmoniques. Ann. Inst. Fourier1 (1949), 103-112. MR37414
  9. [F] B.A. Fuks, Introduction to the Theory of Analytic Functions of Several Complex Variables. Amer. Math. Soc.Providence RI, 1963. Zbl0138.30902MR168793
  10. [L] N.S. Landkof, Foundations of Potential Theory. Springer-Verlag, Berlin, 1972. Zbl0253.31001MR350027
  11. [Ro] H. Rossi, Holomorphically convex sets in several complex variables. Ann. Math. (2) 74 (1961), 470-493. Zbl0107.28601MR133479
  12. [Ru] W. Rudin, Functional Analysis. McGraw-Hill, New York, 1973. Zbl0253.46001MR365062
  13. [Z1] L. Zalcman, Analytic Capacity and Rational Approximation. Springer-Verlag, Berlin, 1968. Zbl0171.03701MR227434
  14. [Z2] L. Zalcman, Offbeat integral geometry. Amer. Math. Monthly87 (1980), 161-175. Zbl0433.53048MR562919
  15. [Z3] L. Zalcman, A bibliographic survey of the Pompeiu problem. In: "Approximation by Solutions of Partial Differential Equations" (B. Fuglede et al, eds.), Kluwer Acad. Publ., Dordrecht, 1992, pp. 185-194. Zbl0830.26005MR1168719

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.