Instability phenomena for the moment problem
Lev Aizenberg; Lawrence Zalcman
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)
- Volume: 22, Issue: 1, page 95-107
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAizenberg, Lev, and Zalcman, Lawrence. "Instability phenomena for the moment problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.1 (1995): 95-107. <http://eudml.org/doc/84201>.
@article{Aizenberg1995,
author = {Aizenberg, Lev, Zalcman, Lawrence},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {moment problem; uniqueness theorem; complex Borel measure; harmonic moments},
language = {eng},
number = {1},
pages = {95-107},
publisher = {Scuola normale superiore},
title = {Instability phenomena for the moment problem},
url = {http://eudml.org/doc/84201},
volume = {22},
year = {1995},
}
TY - JOUR
AU - Aizenberg, Lev
AU - Zalcman, Lawrence
TI - Instability phenomena for the moment problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 1
SP - 95
EP - 107
LA - eng
KW - moment problem; uniqueness theorem; complex Borel measure; harmonic moments
UR - http://eudml.org/doc/84201
ER -
References
top- [A1] L. Aizenberg, Carleman's Formulas in Complex Analysis. Kluwer Acad. Publ., Dordrecht, 1993. Zbl0783.32002MR1256735
- [A2] L. Aizenberg, Variations on the theorem of Morera and the problem of Pompeiu. Dokl. Akad. Nauk (1994) (to appear). Zbl0848.30003
- [AM] L.A. Aizenberg - B.C. Mityagin, The spaces of functions analytic in multicircular domains. Sibirsk. Mat. Zh.1 (1960), 153-170, (Russian). Zbl0168.32704MR124526
- [AR] L.A. Aizenberg - C. Rea, The moment-condition for the free boundary problem for CR functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 20 (1993), 313-322. Zbl0787.32021MR1233640
- [BCPZ] C. Berenstein - D.C. Chang - D. Pascuas - L. Zalcman, Variations on the theorem of Morera. Contemp. Math.137 (1992), 63-78. Zbl0769.32001MR1190970
- [Br] M. Brelot, Sur l'approximation et la convergence dans le théorie des fonctions harmoniques ou holomorphes. Bull. Soc. Math. France73 (1945), 55-70. Zbl0061.22804MR13824
- [Bu] R.B. Burckel, An Introduction to Classical Complex Analysis. Birkhäuser Verlag, Boston, 1979.
- [D] J. Deny, Systèmes totaux de fonctions harmoniques. Ann. Inst. Fourier1 (1949), 103-112. MR37414
- [F] B.A. Fuks, Introduction to the Theory of Analytic Functions of Several Complex Variables. Amer. Math. Soc.Providence RI, 1963. Zbl0138.30902MR168793
- [L] N.S. Landkof, Foundations of Potential Theory. Springer-Verlag, Berlin, 1972. Zbl0253.31001MR350027
- [Ro] H. Rossi, Holomorphically convex sets in several complex variables. Ann. Math. (2) 74 (1961), 470-493. Zbl0107.28601MR133479
- [Ru] W. Rudin, Functional Analysis. McGraw-Hill, New York, 1973. Zbl0253.46001MR365062
- [Z1] L. Zalcman, Analytic Capacity and Rational Approximation. Springer-Verlag, Berlin, 1968. Zbl0171.03701MR227434
- [Z2] L. Zalcman, Offbeat integral geometry. Amer. Math. Monthly87 (1980), 161-175. Zbl0433.53048MR562919
- [Z3] L. Zalcman, A bibliographic survey of the Pompeiu problem. In: "Approximation by Solutions of Partial Differential Equations" (B. Fuglede et al, eds.), Kluwer Acad. Publ., Dordrecht, 1992, pp. 185-194. Zbl0830.26005MR1168719
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.