Monodromy of the hypergeometric differential equation of type (3,6) II. The unitary reflection group of order 2 9 . 3 7 . 5 . 7

Keiji Matsumoto; Takeshi Sasaki; Nobuki Takayama; Masaaki Yoshida

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 4, page 617-631
  • ISSN: 0391-173X

How to cite

top

Matsumoto, Keiji, et al. "Monodromy of the hypergeometric differential equation of type (3,6) II. The unitary reflection group of order $2^9 . \: 3^7 . \: 5 . \: 7$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.4 (1993): 617-631. <http://eudml.org/doc/84163>.

@article{Matsumoto1993,
author = {Matsumoto, Keiji, Sasaki, Takeshi, Takayama, Nobuki, Yoshida, Masaaki},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {617-631},
publisher = {Scuola normale superiore},
title = {Monodromy of the hypergeometric differential equation of type (3,6) II. The unitary reflection group of order $2^9 . \: 3^7 . \: 5 . \: 7$},
url = {http://eudml.org/doc/84163},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Matsumoto, Keiji
AU - Sasaki, Takeshi
AU - Takayama, Nobuki
AU - Yoshida, Masaaki
TI - Monodromy of the hypergeometric differential equation of type (3,6) II. The unitary reflection group of order $2^9 . \: 3^7 . \: 5 . \: 7$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 4
SP - 617
EP - 631
LA - eng
UR - http://eudml.org/doc/84163
ER -

References

top
  1. [1] J.H. Conway - R.T. Curtis - S.P. Norton - R.A. Parker - R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985. Zbl0568.20001MR827219
  2. [2] F. Beukers - G. Heckmann, Monodromy for the hypergeometric function nFn-1, Invent. math.95 (1989), 325-354. Zbl0663.30044MR974906
  3. [3] I.M. Gelfand - M.M. Kaplanov - A.V. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math.84 (1990), 255-271. Zbl0741.33011MR1080980
  4. [4] C.M. Hamill, On a finite group of order 6,531,840, Proc. London Math. Soc. (2), 52 (1951), 401-454. Zbl0043.02801MR42403
  5. [5] M. Iwano, Lectures on Differential equations, Tokyo Univ., 1985. 
  6. [6] K. Matsumoto - T. Sasaki - M. Yoshida, The monodromy of the period map of a 4-parameter family of K3 surfaces and the hypergeometric function of type (3,6), Intemat. J. Math.3 (1992), 1-164. Zbl0763.32016MR1136204
  7. [7] K. Matsumoto - T. Sasaki - N. Takayama - M. Yoshida, Monodromy of the hypergeometric differential equation of type (3,6) I, to appear in Duke Math. J., 1993. Zbl0799.33008MR1233442
  8. [8] G.C. Shephard, Unitary groups generated by reflections, Canad. J. Math., 5 (1953), 364-383. Zbl0052.16403MR55349
  9. [9] T. Sasaki, On the finiteness of the monodromy group of the system of hypergeometric differential equations (FD), J. Fac. Sic. Univ. Tokyo24 (1977), 565-573. Zbl0388.33003MR498553
  10. [10] T. Sasai, On a certain class of generalized hypergeometric functions with finite monodromy groups, preprint (1990). Zbl0779.34005MR1197106
  11. [11] G.C. Shephard - J.A. Todd, Finite unitary reflection groups, Canad. J. Math.6 (1954), 274-304. Zbl0055.14305MR59914
  12. [12] K. Takano - E. Bannai, A global study of Jordan-Pochhammer differential equations, Funkcial. Ekvac.19 (1976), 85-99. Zbl0349.34009MR422734
  13. [13] T. Terasoma, Exponential Kummer coverings and determinants of hypergeometric functions, preprint (1991). Zbl0812.33008MR1247668

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.