On the effect of the domain geometry on uniqueness of positive solutions of Δ u + u p = 0

Henghui Zou

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)

  • Volume: 21, Issue: 3, page 343-356
  • ISSN: 0391-173X

How to cite

top

Zou, Henghui. "On the effect of the domain geometry on uniqueness of positive solutions of $\Delta u + u^p = 0$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.3 (1994): 343-356. <http://eudml.org/doc/84181>.

@article{Zou1994,
author = {Zou, Henghui},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {uniqueness of positive solutions; semilinear elliptic equation},
language = {eng},
number = {3},
pages = {343-356},
publisher = {Scuola normale superiore},
title = {On the effect of the domain geometry on uniqueness of positive solutions of $\Delta u + u^p = 0$},
url = {http://eudml.org/doc/84181},
volume = {21},
year = {1994},
}

TY - JOUR
AU - Zou, Henghui
TI - On the effect of the domain geometry on uniqueness of positive solutions of $\Delta u + u^p = 0$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 3
SP - 343
EP - 356
LA - eng
KW - uniqueness of positive solutions; semilinear elliptic equation
UR - http://eudml.org/doc/84181
ER -

References

top
  1. [1] A. Bahri - J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent, the effect of the topology of the domain. Comm. Pure Appl. Math.41 (1988), 253-294. Zbl0649.35033MR929280
  2. [2] C. Bandle, Isoperimetric inequalities and applications. Monographs and Studies in Mathematics, Pitman Advanced Publishing Program, Pitman Publishing Limited, London, 1980. Zbl0436.35063MR572958
  3. [3] H. Brezis, Elliptic equations with limit Sobolev exponents - the impact of topology, Frontier of the mathematical sciences (New York, 1985). Comm. Pure Appl. Math., 39 (1986), no. S, suppl., S17-S39. Zbl0601.35043MR861481
  4. [4] H. Brezis - L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. Zbl0541.35029MR709644
  5. [5] C.V. Coffman, Uniqueness of the ground state solution for Δu - u + u3 = 0 and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46 (1972), 81-95. Zbl0249.35029
  6. [6] B. Gidas - W.M. Ni - L. Nirenberg, Symmetry and related properties via the maximal principle, Comm. Math. Phys., 68 (1979), 209-243. Zbl0425.35020MR544879
  7. [7] B. Gidas - J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901. Zbl0462.35041MR619749
  8. [8] D. Gilbarg - N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1982 (second edition). Zbl0562.35001MR737190
  9. [9] B. Kawohl, Rearrangement and convexity of level sets in PDE, Lecture Notes in Mathematics (1150), Springer-Verlag, New York, 1985. Zbl0593.35002MR810619
  10. [10] M.K. Kwong, Uniqueness of positive solutions of Δu - u + up = 0 in R n, Arch. Rational Mech. Anal., 105 (1989), 243-266. Zbl0676.35032
  11. [11] K. Mcleod - J. Serrin, Uniqueness of positive radial solutions of Δu + f(u) = 0 in Rn, Arch. Rational Mech. Anal., 99 (1987), 115-145. Zbl0667.35023
  12. [12] W.M. Ni - R.D. Naussbaum, Uniqueness and non-uniqueness for positive radial solutions of Δu + f(u, r) = 0, Comm. Pure Appl. Math., 38 (1985), 67-108. Zbl0581.35021
  13. [13] L.A. Peletier - J. Serrin, Uniqueness of non-negative solutions of semilinear equations in Rn, J. Differential Equations, 61 (1986), 380-397. Zbl0577.35035MR829369
  14. [14] S.I. Pohozaev, Eigenfunctions of the equation Δu + λf(u) = 0, Dokl. Akad. Nauk SSSR, 165 (1956), 1408-1410. Zbl0141.30202
  15. [15] P. Rabinowitz, Minimax method in critical point theory with applications to differential equations. CBMS Regional Con. Series Math., no. 65, AMS, Providence, 1986. Zbl0609.58002MR845785
  16. [16] G. Talenti, Best constant in Sobolev inequality. Ann. Mat. Pura Appl., 110 (1976), 353-372. Zbl0353.46018MR463908
  17. [17] H. Weinberger, Variational methods for eigenvalue approximation. Regional conference series in applied mathematics, SIAM, Philadelphia, 1974. Zbl0296.49033MR400004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.