On the effect of the domain geometry on uniqueness of positive solutions of
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)
- Volume: 21, Issue: 3, page 343-356
- ISSN: 0391-173X
Access Full Article
topHow to cite
topZou, Henghui. "On the effect of the domain geometry on uniqueness of positive solutions of $\Delta u + u^p = 0$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.3 (1994): 343-356. <http://eudml.org/doc/84181>.
@article{Zou1994,
author = {Zou, Henghui},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {uniqueness of positive solutions; semilinear elliptic equation},
language = {eng},
number = {3},
pages = {343-356},
publisher = {Scuola normale superiore},
title = {On the effect of the domain geometry on uniqueness of positive solutions of $\Delta u + u^p = 0$},
url = {http://eudml.org/doc/84181},
volume = {21},
year = {1994},
}
TY - JOUR
AU - Zou, Henghui
TI - On the effect of the domain geometry on uniqueness of positive solutions of $\Delta u + u^p = 0$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 3
SP - 343
EP - 356
LA - eng
KW - uniqueness of positive solutions; semilinear elliptic equation
UR - http://eudml.org/doc/84181
ER -
References
top- [1] A. Bahri - J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent, the effect of the topology of the domain. Comm. Pure Appl. Math.41 (1988), 253-294. Zbl0649.35033MR929280
- [2] C. Bandle, Isoperimetric inequalities and applications. Monographs and Studies in Mathematics, Pitman Advanced Publishing Program, Pitman Publishing Limited, London, 1980. Zbl0436.35063MR572958
- [3] H. Brezis, Elliptic equations with limit Sobolev exponents - the impact of topology, Frontier of the mathematical sciences (New York, 1985). Comm. Pure Appl. Math., 39 (1986), no. S, suppl., S17-S39. Zbl0601.35043MR861481
- [4] H. Brezis - L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. Zbl0541.35029MR709644
- [5] C.V. Coffman, Uniqueness of the ground state solution for Δu - u + u3 = 0 and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46 (1972), 81-95. Zbl0249.35029
- [6] B. Gidas - W.M. Ni - L. Nirenberg, Symmetry and related properties via the maximal principle, Comm. Math. Phys., 68 (1979), 209-243. Zbl0425.35020MR544879
- [7] B. Gidas - J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901. Zbl0462.35041MR619749
- [8] D. Gilbarg - N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1982 (second edition). Zbl0562.35001MR737190
- [9] B. Kawohl, Rearrangement and convexity of level sets in PDE, Lecture Notes in Mathematics (1150), Springer-Verlag, New York, 1985. Zbl0593.35002MR810619
- [10] M.K. Kwong, Uniqueness of positive solutions of Δu - u + up = 0 in R n, Arch. Rational Mech. Anal., 105 (1989), 243-266. Zbl0676.35032
- [11] K. Mcleod - J. Serrin, Uniqueness of positive radial solutions of Δu + f(u) = 0 in Rn, Arch. Rational Mech. Anal., 99 (1987), 115-145. Zbl0667.35023
- [12] W.M. Ni - R.D. Naussbaum, Uniqueness and non-uniqueness for positive radial solutions of Δu + f(u, r) = 0, Comm. Pure Appl. Math., 38 (1985), 67-108. Zbl0581.35021
- [13] L.A. Peletier - J. Serrin, Uniqueness of non-negative solutions of semilinear equations in Rn, J. Differential Equations, 61 (1986), 380-397. Zbl0577.35035MR829369
- [14] S.I. Pohozaev, Eigenfunctions of the equation Δu + λf(u) = 0, Dokl. Akad. Nauk SSSR, 165 (1956), 1408-1410. Zbl0141.30202
- [15] P. Rabinowitz, Minimax method in critical point theory with applications to differential equations. CBMS Regional Con. Series Math., no. 65, AMS, Providence, 1986. Zbl0609.58002MR845785
- [16] G. Talenti, Best constant in Sobolev inequality. Ann. Mat. Pura Appl., 110 (1976), 353-372. Zbl0353.46018MR463908
- [17] H. Weinberger, Variational methods for eigenvalue approximation. Regional conference series in applied mathematics, SIAM, Philadelphia, 1974. Zbl0296.49033MR400004
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.