Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle

Lucio Damascelli; Massimo Grossi; Filomena Pacella

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 5, page 631-652
  • ISSN: 0294-1449

How to cite

top

Damascelli, Lucio, Grossi, Massimo, and Pacella, Filomena. "Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle." Annales de l'I.H.P. Analyse non linéaire 16.5 (1999): 631-652. <http://eudml.org/doc/78477>.

@article{Damascelli1999,
author = {Damascelli, Lucio, Grossi, Massimo, Pacella, Filomena},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {elliptic equations; maximum principle},
language = {eng},
number = {5},
pages = {631-652},
publisher = {Gauthier-Villars},
title = {Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle},
url = {http://eudml.org/doc/78477},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Damascelli, Lucio
AU - Grossi, Massimo
AU - Pacella, Filomena
TI - Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 5
SP - 631
EP - 652
LA - eng
KW - elliptic equations; maximum principle
UR - http://eudml.org/doc/78477
ER -

References

top
  1. [1] Adimurthi, F. Pacella and S. Yadava, On the number of positive solutions of some semilinear Dirichlet problems in a ball, Diff. Int. Eq., Vol. 10, 1997, pp. 1157-1170. Zbl0940.35069MR1608057
  2. [2] Adimurthi and S. Yadava, An elementary proof for the uniqueness of positive radial solution of a quasilinear Dirichlet problem, Arch. Rat. Mech. Anal., Vol. 126, 1994,pp. 219-229. Zbl0806.35031MR1288602
  3. [3] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex 
  4. nonlinearities in some elliptic problems, J. Funct. Anal., Vol. 122, 1994, pp. 519-543. Zbl0805.35028MR1276168
  5. [4] A. Babin, Symmetry of instability for scalar equations in symmetric domains, J. Diff. Eq.Vol. 123, 1995, pp. 122-152. Zbl0852.35069MR1359914
  6. [5] H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., Vol. 22, 1991, pp. 1-37. Zbl0784.35025MR1159383
  7. [6] H. Berestycki, L. Nirenberg and S.N.S. Varadhan, The principle eigenvalues and maximum principle for second order elliptic operators in general domains, Comm. Pure Appl. Math., Vol. 47, 1994, pp. 47-92. Zbl0806.35129MR1258192
  8. [7] H. Brezis and S. Kamin, Sublinear elliptic equations in RN, Man. Math., Vol. 74, 1992,pp. 87-106. Zbl0761.35027MR1141779
  9. [8] L. Damascelli, A remark on the uniqueness of the positive solution for a semilinear 
  10. elliptic equation, Nonlin. Anal. T.M.A., Vol. 26, 1996, pp. 211-216. Zbl0838.35041MR1359470
  11. [9] E.N. Dancer, The effect of domain shape on the number of positive solutions of certain Zbl0662.34025
  12. nonlinear equations, J. Diff. Eq., Vol. 74, 1988, pp. 120-156. Zbl0662.34025
  13. [10] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum Zbl0425.35020
  14. principle, Comm. Math. Phis., Vol. 68, 1979, pp. 209-243. Zbl0425.35020MR544879
  15. [11] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic Zbl0462.35041
  16. equations, Comm. Par. Diff. Eq., Vol. 6, 1981, pp. 883-901. Zbl0462.35041
  17. [12] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, 1983. Zbl0562.35001MR737190
  18. [13] C.S. Lin, Uniqueness of solutions minimizing the functional ∫Ω |∇u|2/(∫Ω|u|p+1)2/(p+1) in R2 (preprint). MR1283323
  19. [14] C.S. Lin and W.M. Ni, A counterexample to the nodal domain conjecture and a related Zbl0652.35085
  20. semilinear equation, Proc. Amer. Mat. Soc., Vol. 102, 1988, pp. 271-277. Zbl0652.35085MR920985
  21. [15] W.N. Ni and R.D. Nussbaum, Uniqueness and non-uniqueness for positive radial solutions of Δu + f(u, r) = 0, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 67-108. Zbl0581.35021
  22. [16] M.H. Protter and H.F. Weinberger, Maximum principle in differential equations, Prentice Hall, Englewoood Cliffs, New Jersey, 1967. Zbl0153.13602MR219861
  23. [17] P.N. Srikanth, Uniqueness of solutions of nonlinear Dirichlet problems, Diff. Int. Eq., Vol. 6, 1993, pp. 663-670. Zbl0803.35057MR1202564
  24. [18] Liqun Zhang, Uniqueness of positive solutions of Δu + u + up = 0 in a finite ball, Comm. Part. Diff. Eq., Vol. 17, 1992, pp. 1141-1164. Zbl0782.35025MR1179281
  25. [19] Liqun Zhang, Uniqueness of positive solutions of Δu + up = 0 in a convex domain in R2, (preprint). 
  26. [20] H. Zou, On the effect of the domain geometry on uniqueness of positive solutions of Δu + up = 0, Ann. Sc. Nor. Sup., 1995, pp. 343-356. Zbl0815.35031MR1310630

Citations in EuDML Documents

top
  1. Katiuscia Cerqueti, Un risultatodi unicità per un’equazione semilineare ellittica con esponente critico in domini simmetrici
  2. Lucio Damascelli, On the nodal set of the second eigenfunction of the laplacian in symmetric domains in R N
  3. Dimitri Mugnai, Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue
  4. Dimitri Mugnai, Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.