Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle
Lucio Damascelli; Massimo Grossi; Filomena Pacella
Annales de l'I.H.P. Analyse non linéaire (1999)
- Volume: 16, Issue: 5, page 631-652
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDamascelli, Lucio, Grossi, Massimo, and Pacella, Filomena. "Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle." Annales de l'I.H.P. Analyse non linéaire 16.5 (1999): 631-652. <http://eudml.org/doc/78477>.
@article{Damascelli1999,
author = {Damascelli, Lucio, Grossi, Massimo, Pacella, Filomena},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {elliptic equations; maximum principle},
language = {eng},
number = {5},
pages = {631-652},
publisher = {Gauthier-Villars},
title = {Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle},
url = {http://eudml.org/doc/78477},
volume = {16},
year = {1999},
}
TY - JOUR
AU - Damascelli, Lucio
AU - Grossi, Massimo
AU - Pacella, Filomena
TI - Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 5
SP - 631
EP - 652
LA - eng
KW - elliptic equations; maximum principle
UR - http://eudml.org/doc/78477
ER -
References
top- [1] Adimurthi, F. Pacella and S. Yadava, On the number of positive solutions of some semilinear Dirichlet problems in a ball, Diff. Int. Eq., Vol. 10, 1997, pp. 1157-1170. Zbl0940.35069MR1608057
- [2] Adimurthi and S. Yadava, An elementary proof for the uniqueness of positive radial solution of a quasilinear Dirichlet problem, Arch. Rat. Mech. Anal., Vol. 126, 1994,pp. 219-229. Zbl0806.35031MR1288602
- [3] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex
- nonlinearities in some elliptic problems, J. Funct. Anal., Vol. 122, 1994, pp. 519-543. Zbl0805.35028MR1276168
- [4] A. Babin, Symmetry of instability for scalar equations in symmetric domains, J. Diff. Eq.Vol. 123, 1995, pp. 122-152. Zbl0852.35069MR1359914
- [5] H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., Vol. 22, 1991, pp. 1-37. Zbl0784.35025MR1159383
- [6] H. Berestycki, L. Nirenberg and S.N.S. Varadhan, The principle eigenvalues and maximum principle for second order elliptic operators in general domains, Comm. Pure Appl. Math., Vol. 47, 1994, pp. 47-92. Zbl0806.35129MR1258192
- [7] H. Brezis and S. Kamin, Sublinear elliptic equations in RN, Man. Math., Vol. 74, 1992,pp. 87-106. Zbl0761.35027MR1141779
- [8] L. Damascelli, A remark on the uniqueness of the positive solution for a semilinear
- elliptic equation, Nonlin. Anal. T.M.A., Vol. 26, 1996, pp. 211-216. Zbl0838.35041MR1359470
- [9] E.N. Dancer, The effect of domain shape on the number of positive solutions of certain Zbl0662.34025
- nonlinear equations, J. Diff. Eq., Vol. 74, 1988, pp. 120-156. Zbl0662.34025
- [10] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum Zbl0425.35020
- principle, Comm. Math. Phis., Vol. 68, 1979, pp. 209-243. Zbl0425.35020MR544879
- [11] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic Zbl0462.35041
- equations, Comm. Par. Diff. Eq., Vol. 6, 1981, pp. 883-901. Zbl0462.35041
- [12] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, 1983. Zbl0562.35001MR737190
- [13] C.S. Lin, Uniqueness of solutions minimizing the functional ∫Ω |∇u|2/(∫Ω|u|p+1)2/(p+1) in R2 (preprint). MR1283323
- [14] C.S. Lin and W.M. Ni, A counterexample to the nodal domain conjecture and a related Zbl0652.35085
- semilinear equation, Proc. Amer. Mat. Soc., Vol. 102, 1988, pp. 271-277. Zbl0652.35085MR920985
- [15] W.N. Ni and R.D. Nussbaum, Uniqueness and non-uniqueness for positive radial solutions of Δu + f(u, r) = 0, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 67-108. Zbl0581.35021
- [16] M.H. Protter and H.F. Weinberger, Maximum principle in differential equations, Prentice Hall, Englewoood Cliffs, New Jersey, 1967. Zbl0153.13602MR219861
- [17] P.N. Srikanth, Uniqueness of solutions of nonlinear Dirichlet problems, Diff. Int. Eq., Vol. 6, 1993, pp. 663-670. Zbl0803.35057MR1202564
- [18] Liqun Zhang, Uniqueness of positive solutions of Δu + u + up = 0 in a finite ball, Comm. Part. Diff. Eq., Vol. 17, 1992, pp. 1141-1164. Zbl0782.35025MR1179281
- [19] Liqun Zhang, Uniqueness of positive solutions of Δu + up = 0 in a convex domain in R2, (preprint).
- [20] H. Zou, On the effect of the domain geometry on uniqueness of positive solutions of Δu + up = 0, Ann. Sc. Nor. Sup., 1995, pp. 343-356. Zbl0815.35031MR1310630
Citations in EuDML Documents
top- Katiuscia Cerqueti, Un risultatodi unicità per un’equazione semilineare ellittica con esponente critico in domini simmetrici
- Lucio Damascelli, On the nodal set of the second eigenfunction of the laplacian in symmetric domains in
- Dimitri Mugnai, Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue
- Dimitri Mugnai, Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.