On Veech's conjecture for harmonic functions

W. Hansen; N. Nadirashvili

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 1, page 137-153
  • ISSN: 0391-173X

How to cite


Hansen, W., and Nadirashvili, N.. "On Veech's conjecture for harmonic functions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.1 (1995): 137-153. <http://eudml.org/doc/84196>.

author = {Hansen, W., Nadirashvili, N.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Veech's conjecture; mean value; harmonic function},
language = {eng},
number = {1},
pages = {137-153},
publisher = {Scuola normale superiore},
title = {On Veech's conjecture for harmonic functions},
url = {http://eudml.org/doc/84196},
volume = {22},
year = {1995},

AU - Hansen, W.
AU - Nadirashvili, N.
TI - On Veech's conjecture for harmonic functions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 1
SP - 137
EP - 153
LA - eng
KW - Veech's conjecture; mean value; harmonic function
UR - http://eudml.org/doc/84196
ER -


  1. [Ba1] J.R. Baxter, Restricted mean values and harmonic functions. Trans. Amer. Math. Soc.167 (1972), 451-463. Zbl0238.31006MR293112
  2. [Ba2] J.R. Baxter, Harmonic functions and mass cancellation. Trans. Amer. Math. Soc.245 (1978), 375-384. Zbl0391.60065MR511416
  3. [CV] A. Cornea - J. Veselý, Martin compactification for discrete potential theory. Potential Analysis, (to appear). Zbl0847.31004
  4. [DM] C. Dellacherie - P.A. Meyer, Probabilités et potentiel, Théorie discrète du potentiel. Hermann, Paris, 1983. Zbl0526.60001MR488194
  5. [HN1] W. Hansen - N. Nadirashvili, A converse to the mean value theorem for harmonic functions. Acta Math.171 (1993), 139-163. Zbl0808.31004MR1251579
  6. [HN2] W. Hansen - N. Nadirashvili, Mean values and harmonic functions. Math. Ann.297 (1993), 157-170. Zbl0794.31002MR1238413
  7. [HN3] W. Hansen - N. Nadirashvili, Littlewood's one circle problem. J. London Math. Soc. (2), (to appear). Zbl0804.31001MR1291742
  8. [HN4] W. Hansen - N. Nadirashvili, Liouville's theorem and the restricted mean value property. J. Math. Pures Appl., (to appear). Zbl0869.31004
  9. [HN5] W. Hansen - N. Nadirashvili, On the restricted mean value property for measurable functions. In: "Classical and Modern Potential Theory and Applications", NATO ASI series (K. GowriSankaran et al. eds.), 267-271. Kluwer1994. Zbl0863.31011MR1321623
  10. [Hu] F. Huckemann, On the 'one circle' problem for harmonic functions. J. London Math. Soc. (2) 29 (1954), 491-497. Zbl0056.32601MR63499
  11. [NV] I. Netuka - J. Veselý, Mean value property and harmonic functions. In: "Classical and Modem Potential Theory and Applications ", NATO ASI series (K. GowriSankaran, M. Goldstein eds.), 359-398. Zbl0863.31012MR1321628
  12. [Re] D. Revuz, Markov chains. North Holland Math. Library11, 1975. Zbl0332.60045MR758799
  13. [Ve1] W.A. Veech, A converse to Gauss' theorem. Bull. Amer. Math. Soc.78 (1971), 444-446. Zbl0235.31013MR289800
  14. [Ve2] W.A. Veech, A zero-one law for a class of random walks and a converse to Gauss' mean value theorem. Ann. of Math. (2) 97 (1973), 189-216. Zbl0282.60048MR310269
  15. [Ve3] W.A. Veech, A converse to the mean value theorem for harmonic functions. Amer. J. Math.97 (1975), 1007-1027. Zbl0324.31002MR393521

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.