Choquet’s theory and the Dirichlet problem
Jaroslav Lukeš; Ivan Netuka; Jiří Veselý
Pokroky matematiky, fyziky a astronomie (2000)
- Volume: 45, Issue: 2, page 98-124
- ISSN: 0032-2423
Access Full Article
topHow to cite
topLukeš, Jaroslav, Netuka, Ivan, and Veselý, Jiří. "Choquetova teorie a Dirichletova úloha." Pokroky matematiky, fyziky a astronomie 45.2 (2000): 98-124. <http://eudml.org/doc/196422>.
@article{Lukeš2000,
author = {Lukeš, Jaroslav, Netuka, Ivan, Veselý, Jiří},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {Choquet's theory; Dirichlet boundary value problem; harmonic functions; geometry of convex sets},
language = {cze},
number = {2},
pages = {98-124},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Choquetova teorie a Dirichletova úloha},
url = {http://eudml.org/doc/196422},
volume = {45},
year = {2000},
}
TY - JOUR
AU - Lukeš, Jaroslav
AU - Netuka, Ivan
AU - Veselý, Jiří
TI - Choquetova teorie a Dirichletova úloha
JO - Pokroky matematiky, fyziky a astronomie
PY - 2000
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 45
IS - 2
SP - 98
EP - 124
LA - cze
KW - Choquet's theory; Dirichlet boundary value problem; harmonic functions; geometry of convex sets
UR - http://eudml.org/doc/196422
ER -
References
top- Alfsen, E. M., Compact convex sets and boundary integrals, Springer-Verlag, Berlin 1971 (MR 56 #3615). (1971) Zbl0209.42601MR0445271
- Armitage, D. A., The Riesz-Herglotz representation for positive harmonic functions via Choquet’s theorem, In: Potential Theory — ICPT 94, de Gruyter, Berlin 1996, 229–232 (MR 97f:31006). (1996) Zbl0856.31003MR1404709
- Bauer, H., Aproximace a abstraktní hranice, Pokroky mat. fyz. astronom. 26 (1981), 305–326 (MR 83d:41028). (1981) MR0645302
- Bauer, H., Simplicial function spaces and simplexes, Expo. Math. 3 (1985), 165–168 (MR 87c:46009). (1985) Zbl0564.46007MR0816401
- Bernstein, S., Sur les fonctions absolument monotones, Acta Math. 51 (1928), 1–66. (1928) Zbl55.0142.07
- Bliedtner, J., Hansen, W., Simplicial cones in potential theory, Inventiones Math. 29 (1975), 83–110 (MR 52 #8470). (1975) Zbl0308.31011MR0387630
- Bliedtner, J., Hansen, W., The weak Dirichlet problem, J. Reine Angew. Math. 348 (1984), 34–39 (MR 85h:31012). (1984) Zbl0536.31009MR0733921
- Bliedtner, J., Hansen, W., Potential theory — An analytic and probabilistic approach to balayage, Springer-Verlag, Berlin 1986 (MR 88b:31002). (1986) Zbl0706.31001MR0850715
- Bochner, S., Harmonic analysis and the theory of probability, University of California Press, Berkeley and Los Angeles 1955 (MR 17 #273d). (1955) Zbl0068.11702MR0072370
- Caffarelli, L. A., Littman, W., Representation formulas for solutions to in , In: Studies in partial differential equations. MAA Stud. Math. 23, Math. Assoc. America, Washington, D. C. 1982, 249–263 (MR 84k:35045). (1982) Zbl0533.35017MR0716508
- Edgar, G. A., Two integral representations, In: Measure theory and its applications (Sherbrooke, Que., 1982). Lecture Notes in Math. 1033, Springer-Verlag 1983, 193–198 (MR 85g:30034). (1982) MR0729532
- Effros, E. G., Kazdan, J. L., Applications of Choquet simplexes to elliptic and parabolic boundary value problems, J. Diff. Eq. 8 (1970), 95–134 (MR 41 #4215). (1970) Zbl0255.46018MR0259577
- Fonf, V. P., Lindenstrauss, J., Phelps, R. R., Infinite dimensional convexity, Preprint (1999). (1999) Zbl1086.46004MR1863703
- Hansen, W., A Liouville property for spherical averages in the plane, Preprint (1999). (1999) MR1819883
- Hansen, W., Nadirashvili, N., Littlewood’s one circle problem, J. London Math. Soc. (2) 50 (1994), 349–360 (MR 95j:31002). (1994) Zbl0804.31001MR1291742
- Hansen, W., Nadirashvili, N., On Veech’s conjecture for harmonic functions, Ann. Scuola Norm. Sup. Pisa Cl.-Sci. (4), 22 (1995), 137–153 (MR 96c:31004). (1995) Zbl0846.31003MR1315353
- Helms, L. L., Introduction to potential theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience, New York – London – Sydney 1969 (MR 41 #5638). (1969) Zbl0188.17203MR0261018
- Holland, F., The extreme points of a class of functions with positive real part, Math. Ann. 202 (1973), 85–87 (MR 49 #562). (1973) Zbl0246.30027MR0335782
- Hunt, R. R., Wheeden, R. L., Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 505–527 (MR 43 #547). (1970) Zbl0193.39601MR0274787
- Choquet, G., Lectures on analysis I–III, W. A. Benjamin, Inc., New York––Amsterdam 1969 (MR 40 #3254). (1969) Zbl0181.39603
- Choquet, G., Deux exemples classiques de représentation intégrale, Enseignement Math.(2) 15 (1969), 63–75 (MR 40 #6224). (1969) Zbl0175.42202MR0253009
- Jacobs, K., Extremalpunkte konvexer Mengen, In: Selecta Mathematica, III. Selecta Math., Heidelberger Taschenbücher 86 (1971), 90–118 (MR 58 #30754). (1971) Zbl0219.46014MR0641050
- Keldyš, M. V., On the solubility and stability of the Dirichlet problem (rusky), Uspechi Mat. Nauk. 8 (1941), 171–292 (MR 3 #123f). (1941) MR0005249
- Keldyš, M. V., On the Dirichlet problem (rusky), Dokl. Akad. Nauk SSSR 32 (1941), 308–309 (MR 6 #64a). (1941)
- Klee, V., Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959), 51–63 (MR 22 #5879). (1959) Zbl0092.11602MR0115076
- Korányi, A., A survey of harmonic functions on symmetric spaces, In: Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1. Amer. Math. Soc., Providence, R. I. 1979, 323–344 (MR 80k:43012). (1978) Zbl0433.43010
- Král, J., Netuka, I., Veselý, J., Teorie potenciálu IV, SPN, Praha 1977. (1977)
- Kružík, M., Bauer’s maximum principle and hulls of sets, Preprint (2000). (2000) Zbl0981.49010MR1797873
- Lindenstrauss, J., Some useful facts about Banach spaces, In: Geometric aspects of functional analysis, Lecture Notes in Math. 1317, Springer-Verlag, Berlin 1988, 185–200 (MR 89g:46015). (1317) Zbl0651.46019MR0950980
- Lukeš, J., Malý, J., Measure and integral, Matfyzpress, Praha 1995. (1995) Zbl0888.28001
- Lukeš, J., Malý, J., Zajíček, L., Fine topology methods in real analysis and potential theory, Lecture Notes in Math. 1189, Springer-Verlag, Berlin – New York 1986 (MR 89b:31001). (1189) Zbl0607.31001MR0861411
- Martin, R. S.., Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137–172 (MR 2 #292h). (1941) Zbl0025.33302MR0003919
- Netuka, I., The Dirichlet problem for harmonic functions, Amer. Math. Monthly 87 (1980), 621–628 (MR 82c:31005). (1980) Zbl0454.31002MR0600920
- Netuka, I., Veselý, J., Dirichletova úloha a Keldyšova věta, Pokroky mat. fyz. astronom. 24 (1979), 77–88 (MR 82f:01126). (1979) MR0543123
- Netuka, I., Veselý, J., Mean value property and harmonic functions, In: Classical and modern potential theory and applications (Chateau de Bonas, 1993). Kluwer Acad. Publ., Dordrecht 1994, 359–398 (MR 96c:31001). (1993) Zbl0863.31012MR1321628
- Phelps, R. R., Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N. J. – Toronto, Ont. – London 1966 (MR 33 #1690). (1966) Zbl0135.36203MR0193470
- Price, G. B., On the extreme points of convex sets, Duke Math. J. 3 (1937), 56–67. (1937) Zbl0016.22902MR1545973
- Rakestraw, R. M., A representation theorem for real convex functions, Pac. J. Math. 60 (1975), 165–168 (MR 52 #14193). (1975) Zbl0266.26009MR0393383
- Robertson, M. S., On the coefficients of a typically-real functionas, Bul. Amer. Math. Soc. 41 (1935), 565–572. (1935) MR1563142
- Roubíček, T., Relaxation in optimization theory and variational calculus, de Gruyter Series in Nonlinear Analysis and Applications 4, de Gruyter, Berlin – New York 1997 (MR 98e:49002). (1997) Zbl0880.49002MR1458067
- Veech, W. A., A converse to the mean value theorem for harmonic functions, Amer. J. Math. 97 (1975), 1007–1027 (MR 52 #14330). (1975) Zbl0324.31002MR0393521
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.