Choquet’s theory and the Dirichlet problem

Jaroslav Lukeš; Ivan Netuka; Jiří Veselý

Pokroky matematiky, fyziky a astronomie (2000)

  • Volume: 45, Issue: 2, page 98-124
  • ISSN: 0032-2423

How to cite

top

Lukeš, Jaroslav, Netuka, Ivan, and Veselý, Jiří. "Choquetova teorie a Dirichletova úloha." Pokroky matematiky, fyziky a astronomie 45.2 (2000): 98-124. <http://eudml.org/doc/196422>.

@article{Lukeš2000,
author = {Lukeš, Jaroslav, Netuka, Ivan, Veselý, Jiří},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {Choquet's theory; Dirichlet boundary value problem; harmonic functions; geometry of convex sets},
language = {cze},
number = {2},
pages = {98-124},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Choquetova teorie a Dirichletova úloha},
url = {http://eudml.org/doc/196422},
volume = {45},
year = {2000},
}

TY - JOUR
AU - Lukeš, Jaroslav
AU - Netuka, Ivan
AU - Veselý, Jiří
TI - Choquetova teorie a Dirichletova úloha
JO - Pokroky matematiky, fyziky a astronomie
PY - 2000
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 45
IS - 2
SP - 98
EP - 124
LA - cze
KW - Choquet's theory; Dirichlet boundary value problem; harmonic functions; geometry of convex sets
UR - http://eudml.org/doc/196422
ER -

References

top
  1. Alfsen, E. M., Compact convex sets and boundary integrals, Springer-Verlag, Berlin 1971 (MR 56 #3615). (1971) Zbl0209.42601MR0445271
  2. Armitage, D. A., The Riesz-Herglotz representation for positive harmonic functions via Choquet’s theorem, In: Potential Theory — ICPT 94, de Gruyter, Berlin 1996, 229–232 (MR 97f:31006). (1996) Zbl0856.31003MR1404709
  3. Bauer, H., Aproximace a abstraktní hranice, Pokroky mat. fyz. astronom. 26 (1981), 305–326 (MR 83d:41028). (1981) MR0645302
  4. Bauer, H., Simplicial function spaces and simplexes, Expo. Math. 3 (1985), 165–168 (MR 87c:46009). (1985) Zbl0564.46007MR0816401
  5. Bernstein, S., Sur les fonctions absolument monotones, Acta Math. 51 (1928), 1–66. (1928) Zbl55.0142.07
  6. Bliedtner, J., Hansen, W., Simplicial cones in potential theory, Inventiones Math. 29 (1975), 83–110 (MR 52 #8470). (1975) Zbl0308.31011MR0387630
  7. Bliedtner, J., Hansen, W., The weak Dirichlet problem, J. Reine Angew. Math. 348 (1984), 34–39 (MR 85h:31012). (1984) Zbl0536.31009MR0733921
  8. Bliedtner, J., Hansen, W., Potential theory — An analytic and probabilistic approach to balayage, Springer-Verlag, Berlin 1986 (MR 88b:31002). (1986) Zbl0706.31001MR0850715
  9. Bochner, S., Harmonic analysis and the theory of probability, University of California Press, Berkeley and Los Angeles 1955 (MR 17 #273d). (1955) Zbl0068.11702MR0072370
  10. Caffarelli, L. A., Littman, W., Representation formulas for solutions to Δ u - u = 0 in n , In: Studies in partial differential equations. MAA Stud. Math. 23, Math. Assoc. America, Washington, D. C. 1982, 249–263 (MR 84k:35045). (1982) Zbl0533.35017MR0716508
  11. Edgar, G. A., Two integral representations, In: Measure theory and its applications (Sherbrooke, Que., 1982). Lecture Notes in Math. 1033, Springer-Verlag 1983, 193–198 (MR 85g:30034). (1982) MR0729532
  12. Effros, E. G., Kazdan, J. L., Applications of Choquet simplexes to elliptic and parabolic boundary value problems, J. Diff. Eq. 8 (1970), 95–134 (MR 41 #4215). (1970) Zbl0255.46018MR0259577
  13. Fonf, V. P., Lindenstrauss, J., Phelps, R. R., Infinite dimensional convexity, Preprint (1999). (1999) Zbl1086.46004MR1863703
  14. Hansen, W., A Liouville property for spherical averages in the plane, Preprint (1999). (1999) MR1819883
  15. Hansen, W., Nadirashvili, N., Littlewood’s one circle problem, J. London Math. Soc. (2) 50 (1994), 349–360 (MR 95j:31002). (1994) Zbl0804.31001MR1291742
  16. Hansen, W., Nadirashvili, N., On Veech’s conjecture for harmonic functions, Ann. Scuola Norm. Sup. Pisa Cl.-Sci. (4), 22 (1995), 137–153 (MR 96c:31004). (1995) Zbl0846.31003MR1315353
  17. Helms, L. L., Introduction to potential theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience, New York – London – Sydney 1969 (MR 41 #5638). (1969) Zbl0188.17203MR0261018
  18. Holland, F., The extreme points of a class of functions with positive real part, Math. Ann. 202 (1973), 85–87 (MR 49 #562). (1973) Zbl0246.30027MR0335782
  19. Hunt, R. R., Wheeden, R. L., Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 505–527 (MR 43 #547). (1970) Zbl0193.39601MR0274787
  20. Choquet, G., Lectures on analysis I–III, W. A. Benjamin, Inc., New York––Amsterdam 1969 (MR 40 #3254). (1969) Zbl0181.39603
  21. Choquet, G., Deux exemples classiques de représentation intégrale, Enseignement Math.(2) 15 (1969), 63–75 (MR 40 #6224). (1969) Zbl0175.42202MR0253009
  22. Jacobs, K., Extremalpunkte konvexer Mengen, In: Selecta Mathematica, III. Selecta Math., Heidelberger Taschenbücher 86 (1971), 90–118 (MR 58 #30754). (1971) Zbl0219.46014MR0641050
  23. Keldyš, M. V., On the solubility and stability of the Dirichlet problem (rusky), Uspechi Mat. Nauk. 8 (1941), 171–292 (MR 3 #123f). (1941) MR0005249
  24. Keldyš, M. V., On the Dirichlet problem (rusky), Dokl. Akad. Nauk SSSR 32 (1941), 308–309 (MR 6 #64a). (1941) 
  25. Klee, V., Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959), 51–63 (MR 22 #5879). (1959) Zbl0092.11602MR0115076
  26. Korányi, A., A survey of harmonic functions on symmetric spaces, In: Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1. Amer. Math. Soc., Providence, R. I. 1979, 323–344 (MR 80k:43012). (1978) Zbl0433.43010
  27. Král, J., Netuka, I., Veselý, J., Teorie potenciálu IV, SPN, Praha 1977. (1977) 
  28. Kružík, M., Bauer’s maximum principle and hulls of sets, Preprint (2000). (2000) Zbl0981.49010MR1797873
  29. Lindenstrauss, J., Some useful facts about Banach spaces, In: Geometric aspects of functional analysis, Lecture Notes in Math. 1317, Springer-Verlag, Berlin 1988, 185–200 (MR 89g:46015). (1317) Zbl0651.46019MR0950980
  30. Lukeš, J., Malý, J., Measure and integral, Matfyzpress, Praha 1995. (1995) Zbl0888.28001
  31. Lukeš, J., Malý, J., Zajíček, L., Fine topology methods in real analysis and potential theory, Lecture Notes in Math. 1189, Springer-Verlag, Berlin – New York 1986 (MR 89b:31001). (1189) Zbl0607.31001MR0861411
  32. Martin, R. S.., Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137–172 (MR 2 #292h). (1941) Zbl0025.33302MR0003919
  33. Netuka, I., The Dirichlet problem for harmonic functions, Amer. Math. Monthly 87 (1980), 621–628 (MR 82c:31005). (1980) Zbl0454.31002MR0600920
  34. Netuka, I., Veselý, J., Dirichletova úloha a Keldyšova věta, Pokroky mat. fyz. astronom. 24 (1979), 77–88 (MR 82f:01126). (1979) MR0543123
  35. Netuka, I., Veselý, J., Mean value property and harmonic functions, In: Classical and modern potential theory and applications (Chateau de Bonas, 1993). Kluwer Acad. Publ., Dordrecht 1994, 359–398 (MR 96c:31001). (1993) Zbl0863.31012MR1321628
  36. Phelps, R. R., Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N. J. – Toronto, Ont. – London 1966 (MR 33 #1690). (1966) Zbl0135.36203MR0193470
  37. Price, G. B., On the extreme points of convex sets, Duke Math. J. 3 (1937), 56–67. (1937) Zbl0016.22902MR1545973
  38. Rakestraw, R. M., A representation theorem for real convex functions, Pac. J. Math. 60 (1975), 165–168 (MR 52 #14193). (1975) Zbl0266.26009MR0393383
  39. Robertson, M. S., On the coefficients of a typically-real functionas, Bul. Amer. Math. Soc. 41 (1935), 565–572. (1935) MR1563142
  40. Roubíček, T., Relaxation in optimization theory and variational calculus, de Gruyter Series in Nonlinear Analysis and Applications 4, de Gruyter, Berlin – New York 1997 (MR 98e:49002). (1997) Zbl0880.49002MR1458067
  41. Veech, W. A., A converse to the mean value theorem for harmonic functions, Amer. J. Math. 97 (1975), 1007–1027 (MR 52 #14330). (1975) Zbl0324.31002MR0393521

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.