Proper mappings between Reinhardt domains with an analytic variety on the boundary

M. Landucci; S. Pinchuk

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 3, page 363-373
  • ISSN: 0391-173X

How to cite

top

Landucci, M., and Pinchuk, S.. "Proper mappings between Reinhardt domains with an analytic variety on the boundary." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.3 (1995): 363-373. <http://eudml.org/doc/84210>.

@article{Landucci1995,
author = {Landucci, M., Pinchuk, S.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Reinhardt domains; holomorphic proper mapping; analytic variety},
language = {eng},
number = {3},
pages = {363-373},
publisher = {Scuola normale superiore},
title = {Proper mappings between Reinhardt domains with an analytic variety on the boundary},
url = {http://eudml.org/doc/84210},
volume = {22},
year = {1995},
}

TY - JOUR
AU - Landucci, M.
AU - Pinchuk, S.
TI - Proper mappings between Reinhardt domains with an analytic variety on the boundary
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 3
SP - 363
EP - 373
LA - eng
KW - Reinhardt domains; holomorphic proper mapping; analytic variety
UR - http://eudml.org/doc/84210
ER -

References

top
  1. [1] H. Alexander, Proper holomorphic mappings in Cn. Indiana Univ. Math. J.26 (1977), 137-146. Zbl0391.32015MR422699
  2. [2] S. Bell, The Bergman kernel function and proper holomorphic mappings. Trans. Amer. Math. Soc.207-2 (1982), 685-691. Zbl0482.32007MR645338
  3. [3] G. Dini - A. Selvaggi, Proper holomorphic mappings between generalized pseudo-ellipsoids. Ann. Mat. Pura Appl.158 (1991), 219-229. Zbl0736.32002MR1131852
  4. [4] M. Landucci, On the proper equivalence for a class of pseudoconvex domains. Trans. Amer. Math. Soc.282 (1984), 807-811. Zbl0575.32026MR732122
  5. [5] M. Landucci, Holomorphic proper self-mappings: case of Reinhardt domains. To appear in Boll. Un. Mat. Ital. Zbl0808.32026MR1273187
  6. [6] M. Landucci - G. Patrizio, Proper holomorphic maps for Reinhardt domains which have a disc in their boundary. To appear in Compte Rendus Acad. Sc. Paris t. 317, Série I, (1993). Zbl0798.32025MR1246648
  7. [7] R. Narasimhan, Several complex variables. ChicagoLecture in Mathematics (1971). Zbl0223.32001MR342725
  8. [8] Y Pan, Proper holomorphic self-mappings of Reinhardt domains. Math. Z.208 (1991), 289-295. Zbl0727.32011MR1128711
  9. [9] W. Rudin, Function theory in polydiscs. Benjamin, New York (1969). Zbl0177.34101MR255841
  10. [10] W. Rudin, Function theory in unit ball of Cn. Grudlehren der mathematischen Wissenschaften241 (1980). Zbl0495.32001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.