A free boundary problem arising in magnetohydrodynamic system

Avner Friedman; Yong Liu

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 3, page 375-448
  • ISSN: 0391-173X

How to cite

top

Friedman, Avner, and Liu, Yong. "A free boundary problem arising in magnetohydrodynamic system." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.3 (1995): 375-448. <http://eudml.org/doc/84211>.

@article{Friedman1995,
author = {Friedman, Avner, Liu, Yong},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {regularity of free boundary; plasma confinement},
language = {eng},
number = {3},
pages = {375-448},
publisher = {Scuola normale superiore},
title = {A free boundary problem arising in magnetohydrodynamic system},
url = {http://eudml.org/doc/84211},
volume = {22},
year = {1995},
}

TY - JOUR
AU - Friedman, Avner
AU - Liu, Yong
TI - A free boundary problem arising in magnetohydrodynamic system
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 3
SP - 375
EP - 448
LA - eng
KW - regularity of free boundary; plasma confinement
UR - http://eudml.org/doc/84211
ER -

References

top
  1. [1] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math.12 (1959), 623-727. Zbl0093.10401MR125307
  2. [2] H.W. Alt - L.A. Caffarelli, Existence and regularity for a mimimum problem with free boundary. J. Reine Angew. Math.325 (1981), 105-144. Zbl0449.35105MR618549
  3. [3] H.W. Alt - L.A. Caffarelli - A. Friedman, Variational problems with two phases and their free boundaries. Trans. Amer. Math. Soc.282 (1984), 431-461. Zbl0844.35137MR732100
  4. [4] J. Athanasopoulos - L.A. Caffarelli, A theorem of real analysis and its application to free-boundary problems. Comm. Pure Appl. Math.38 (1985), 499-502. Zbl0593.35084MR803243
  5. [5] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are C1,α. Rev. Mat. Iberoamericana3 (1987), 139-162. Zbl0676.35085
  6. [6] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz. Comm. Pure Appl. Math.42 (1989), 55-78. Zbl0676.35086MR973745
  7. [7] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness, and dependence on X. Ann. Scuola Norm. Sup. Pisa15 (1988), 583-602. Zbl0702.35249MR1029856
  8. [8] L.A. Caffarelli - E. Fabes - M. Mortola - S. Salsa, Boundary behavior of non-negative solutions of elliptic operators in divergence form. Indiana Univ. Math. J.30 (1981), 621-640. Zbl0512.35038MR620271
  9. [9] M. Cranston - E. Fabes - Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator. Trans. Amer. Math. Soc.307 (1988), 171-194. Zbl0652.60076MR936811
  10. [10] B. Dahlberg, On estimates of harmonic measures. Arch. Rational Mech. Anal.65 (1977), 272-288. Zbl0406.28009MR466593
  11. [11] H. Federer, Geometric measure theory. Springer-Verlag, Berlin, 1969. Zbl0176.00801MR257325
  12. [12] S. Friedland - W.K. Hayman, Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions. Comment. Math. Helv.51 (1976), 133-161. Zbl0339.31003MR412442
  13. [13] A. Friedman, Variational principles and free-boundary problems. Wiley-Interscience, New York, 1982. Zbl0564.49002MR679313
  14. [14] D. Gilbarg - N.S. Trudinger, Elliptic partial differential equations of second order. Second edition, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  15. [15] H. Grad - A. Kadish - O. Stevens, A free boundary Tokamak equilibrium. Comm. Pure Appl. Math.27 (1974), 39-57. Zbl0283.76076MR351245
  16. [16] D. Jerison - C. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math.46 (1982), 80-147. Zbl0514.31003MR676988
  17. [17] D. Kinderlehrer - L. Nirenberg - J. Spruck, Regularity in elliptic free boundary problems, I. J. Analyse Math.34 (1978), 86-119. Zbl0402.35045MR531272
  18. [18] D. Kinderlehrer - L. Nirenberg - J. Spruck, Regularity in elliptic free boundary problems, II: Equations of higher order. Ann. Scuola Norm. Sup. Pisa6 (1979), 637-683. Zbl0425.35097MR563338
  19. [19] D. Kinderlehrer - J. Spruck, Regularity in free boundary problem. Ann. Scuola Norm. Sup. Pisa5 (1978), 131-148. MR481511
  20. [20] C.B. Morrey, Multiple integrals in the calculus of variations. Springer-Verlag, New York, 1966. Zbl0142.38701MR202511
  21. [21] R. Temam, A non-linear eigenvalue problem: The shape at equilibrium of a confined plasma. Arch. Rational Mech. Anal.60 (1975), 51-73. Zbl0328.35069MR412637
  22. [22] R. Temam, Remarks on a free boundary value problem arising in the plasma physics. Comm. Partial Differential Equations2 (1977), 563-585. Zbl0355.35023MR602544
  23. [23] T. Ushijima, On the linear stability analysis of magnetohydrodynamic system. In "Lecture notes in numerical and applies systems", Vol. 5: Nonlinear Partial Differential Equations in Applied Science. Proc. U.S. - Japan Seminar, Tokyo, 1982. Editors: H. Fujita, P.D. Lax and G. Strang, North-Holland, Kinokuniya (1981), 333-344. Zbl0528.76055MR730251
  24. [24] Z. Zhao, Green functions and conditional gauge for a 2-dimensional domain, Seminar on Stochastic Processes, Progress in Probability and Statistics 15, Birkhäuser (1988), 283-294. Zbl0667.35065MR1046423

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.