Orbifold Riemann surfaces and the Yang-Mills-Higgs equations

Ben Nasatyr; Brian Steer

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 4, page 595-643
  • ISSN: 0391-173X

How to cite

top

Nasatyr, Ben, and Steer, Brian. "Orbifold Riemann surfaces and the Yang-Mills-Higgs equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.4 (1995): 595-643. <http://eudml.org/doc/84217>.

@article{Nasatyr1995,
author = {Nasatyr, Ben, Steer, Brian},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {moduli space; rank-two solutions; Yang-Mills-Higgs equations; orbifold Riemann surfaces; Teichmüller space},
language = {eng},
number = {4},
pages = {595-643},
publisher = {Scuola normale superiore},
title = {Orbifold Riemann surfaces and the Yang-Mills-Higgs equations},
url = {http://eudml.org/doc/84217},
volume = {22},
year = {1995},
}

TY - JOUR
AU - Nasatyr, Ben
AU - Steer, Brian
TI - Orbifold Riemann surfaces and the Yang-Mills-Higgs equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 4
SP - 595
EP - 643
LA - eng
KW - moduli space; rank-two solutions; Yang-Mills-Higgs equations; orbifold Riemann surfaces; Teichmüller space
UR - http://eudml.org/doc/84217
ER -

References

top
  1. [1] M.F. Atiyah - R. Bott, The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A, 308 (1982), 523-615. Zbl0509.14014MR702806
  2. [2] D.M. Austin - P.J. Braam, Morse-Bott theory and equivariant cohomology. To Appear in the Memorial Volume to Andreas Floer, ed. H. Hofer, C.H. Taubes and E. Zehnder. Zbl0834.57017MR1362827
  3. [3] L. Bers, Uniformization, moduli and Kleinian groups. Bull. London Math. Soc., 4 (1972), 257-300. Zbl0257.32012MR348097
  4. [4] H.U. Boden - K. Yokogawa, Moduli of parabolic Higgs bundles and parabolic K(D) pairs over smooth curves: I. Preprint, 1995. Zbl0883.14012
  5. [5] S.K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri. J. Differential Geom., 18 (1983) 269-277. Zbl0504.49027MR710055
  6. [6] S.K. Donaldson, Twisted harmonic maps and the self-duality equations. Proc. London Math. Soc. (3), 55 (1987), 127-131. Zbl0634.53046MR887285
  7. [7] C.J. Earle - J. Eells, A fibre bundle description of Teichmüller theory. J. Differential Geom., 3 (1969), 19-43. Zbl0185.32901MR276999
  8. [8] R.H. Fox, On Fenchel's conjecture about F-groups. Matematisk TiddskriftB, 61-65, 1952. Zbl0049.15404MR53937
  9. [9] T. Frankel, Fixed points and torsion on Kahler manifolds. Ann. of Math., 70 (1959), 1-8. Zbl0088.38002MR131883
  10. [10] M. Furuta - B. Steer, Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points. Adv. Math., 96 (1992), 38-102. Zbl0769.58009MR1185787
  11. [11] O. García-Prada, The Geometry of the Vortex Equation. PhD thesis, Oxford University, 1991. 
  12. [12] R.C. Gunning, Lectures on Riemann Surfaces. Princeton University Press, Princeton, 1966. Zbl0175.36801MR207977
  13. [13] R. Hartshorne, Algebraic Geometry. Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
  14. [14] N.J. Hitchin, The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3), 55 (1987), 59-126. Zbl0634.53045MR887284
  15. [15] D. Hulin - M. Troyanov, Prescribing curvature on open surfaces. Math. Ann., 293 (1992), 277-315. Zbl0799.53047MR1166122
  16. [16] A. Jaffe - C.H. Taubes, Vortices and Monopoles. Birkhäuser, Boston, 1980. Zbl0457.53034MR614447
  17. [17] M. Jankins - W. Neumann, Homomorphisms of Fuchsian groups to PSL(2,R). Comment. Math. Helv., 60 (1985), 480-495. Zbl0598.57007MR814153
  18. [18] T. Kawasaki, The Riemann-Roch theorem for complex v-manifolds. Osaka J. Math., 16 (1979), 151-159. Zbl0405.32010MR527023
  19. [19] T. Kawasaki, The index of elliptic operators over v-manifolds. Nagoya Math. J., 84 (1981), 135-157. Zbl0437.58020MR641150
  20. [20] S. Kobayashi, Differential Geometry of Complex Vector Bundles. Iwanami Shoten and Princeton University Press, Princeton, New Jersey, 1987. Zbl0708.53002MR909698
  21. [21] R.C. McOwen, Point singularities and conformal metrics on Riemann surfaces. Proc. Amer. Math. Soc., 103 (1988), 222-224. Zbl0657.30033MR938672
  22. [22] E.B. Nasatyr, Seifert Manifolds and Gauge Theory. PhD thesis, Oxford University, 1991. 
  23. [23] E.B. Nasatyr - B. Steer, The Narasimhan-Seshadri theorem for parabolic bundles - an orbifold approach. Phil. Trans. R. Soc. Lond. A (1995). In press. Zbl0864.57033MR1362026
  24. [24] T. Parker, Gauge theories on four dimensional Riemannian manifolds. Comm. Math. Phys., 85 (1982), 563-602. Zbl0502.53022MR677998
  25. [25] I. Satake, On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 359-363. Zbl0074.18103MR79769
  26. [26] P. Scott, The geometries of 3-manifolds. Bulletin London Math. Soc., 15 (1983), 401-487. Zbl0561.57001MR705527
  27. [27] C.T. Simpson, Harmonic bundles on noncompact curves. J. Amer. Math. Soc., 3 (1990), 713-770. Zbl0713.58012MR1040197

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.