Orbifold Riemann surfaces and the Yang-Mills-Higgs equations

Ben Nasatyr; Brian Steer

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 4, page 595-643
  • ISSN: 0391-173X

How to cite

top

Nasatyr, Ben, and Steer, Brian. "Orbifold Riemann surfaces and the Yang-Mills-Higgs equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.4 (1995): 595-643. <http://eudml.org/doc/84217>.

@article{Nasatyr1995,
author = {Nasatyr, Ben, Steer, Brian},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {moduli space; rank-two solutions; Yang-Mills-Higgs equations; orbifold Riemann surfaces; Teichmüller space},
language = {eng},
number = {4},
pages = {595-643},
publisher = {Scuola normale superiore},
title = {Orbifold Riemann surfaces and the Yang-Mills-Higgs equations},
url = {http://eudml.org/doc/84217},
volume = {22},
year = {1995},
}

TY - JOUR
AU - Nasatyr, Ben
AU - Steer, Brian
TI - Orbifold Riemann surfaces and the Yang-Mills-Higgs equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 4
SP - 595
EP - 643
LA - eng
KW - moduli space; rank-two solutions; Yang-Mills-Higgs equations; orbifold Riemann surfaces; Teichmüller space
UR - http://eudml.org/doc/84217
ER -

References

top
  1. [1] M.F. Atiyah - R. Bott, The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A, 308 (1982), 523-615. Zbl0509.14014MR702806
  2. [2] D.M. Austin - P.J. Braam, Morse-Bott theory and equivariant cohomology. To Appear in the Memorial Volume to Andreas Floer, ed. H. Hofer, C.H. Taubes and E. Zehnder. Zbl0834.57017MR1362827
  3. [3] L. Bers, Uniformization, moduli and Kleinian groups. Bull. London Math. Soc., 4 (1972), 257-300. Zbl0257.32012MR348097
  4. [4] H.U. Boden - K. Yokogawa, Moduli of parabolic Higgs bundles and parabolic K(D) pairs over smooth curves: I. Preprint, 1995. Zbl0883.14012
  5. [5] S.K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri. J. Differential Geom., 18 (1983) 269-277. Zbl0504.49027MR710055
  6. [6] S.K. Donaldson, Twisted harmonic maps and the self-duality equations. Proc. London Math. Soc. (3), 55 (1987), 127-131. Zbl0634.53046MR887285
  7. [7] C.J. Earle - J. Eells, A fibre bundle description of Teichmüller theory. J. Differential Geom., 3 (1969), 19-43. Zbl0185.32901MR276999
  8. [8] R.H. Fox, On Fenchel's conjecture about F-groups. Matematisk TiddskriftB, 61-65, 1952. Zbl0049.15404MR53937
  9. [9] T. Frankel, Fixed points and torsion on Kahler manifolds. Ann. of Math., 70 (1959), 1-8. Zbl0088.38002MR131883
  10. [10] M. Furuta - B. Steer, Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points. Adv. Math., 96 (1992), 38-102. Zbl0769.58009MR1185787
  11. [11] O. García-Prada, The Geometry of the Vortex Equation. PhD thesis, Oxford University, 1991. 
  12. [12] R.C. Gunning, Lectures on Riemann Surfaces. Princeton University Press, Princeton, 1966. Zbl0175.36801MR207977
  13. [13] R. Hartshorne, Algebraic Geometry. Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
  14. [14] N.J. Hitchin, The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3), 55 (1987), 59-126. Zbl0634.53045MR887284
  15. [15] D. Hulin - M. Troyanov, Prescribing curvature on open surfaces. Math. Ann., 293 (1992), 277-315. Zbl0799.53047MR1166122
  16. [16] A. Jaffe - C.H. Taubes, Vortices and Monopoles. Birkhäuser, Boston, 1980. Zbl0457.53034MR614447
  17. [17] M. Jankins - W. Neumann, Homomorphisms of Fuchsian groups to PSL(2,R). Comment. Math. Helv., 60 (1985), 480-495. Zbl0598.57007MR814153
  18. [18] T. Kawasaki, The Riemann-Roch theorem for complex v-manifolds. Osaka J. Math., 16 (1979), 151-159. Zbl0405.32010MR527023
  19. [19] T. Kawasaki, The index of elliptic operators over v-manifolds. Nagoya Math. J., 84 (1981), 135-157. Zbl0437.58020MR641150
  20. [20] S. Kobayashi, Differential Geometry of Complex Vector Bundles. Iwanami Shoten and Princeton University Press, Princeton, New Jersey, 1987. Zbl0708.53002MR909698
  21. [21] R.C. McOwen, Point singularities and conformal metrics on Riemann surfaces. Proc. Amer. Math. Soc., 103 (1988), 222-224. Zbl0657.30033MR938672
  22. [22] E.B. Nasatyr, Seifert Manifolds and Gauge Theory. PhD thesis, Oxford University, 1991. 
  23. [23] E.B. Nasatyr - B. Steer, The Narasimhan-Seshadri theorem for parabolic bundles - an orbifold approach. Phil. Trans. R. Soc. Lond. A (1995). In press. Zbl0864.57033MR1362026
  24. [24] T. Parker, Gauge theories on four dimensional Riemannian manifolds. Comm. Math. Phys., 85 (1982), 563-602. Zbl0502.53022MR677998
  25. [25] I. Satake, On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 359-363. Zbl0074.18103MR79769
  26. [26] P. Scott, The geometries of 3-manifolds. Bulletin London Math. Soc., 15 (1983), 401-487. Zbl0561.57001MR705527
  27. [27] C.T. Simpson, Harmonic bundles on noncompact curves. J. Amer. Math. Soc., 3 (1990), 713-770. Zbl0713.58012MR1040197

NotesEmbed ?

top

You must be logged in to post comments.