Limiting configurations for solutions of Hitchin’s equation
Rafe Mazzeo[1]; Jan Swoboda[2]; Hartmut Weiß[3]; Frederik Witt[4]
- [1] Department of Mathematics Stanford University Stanford, CA 94305 (USA)
- [2] Mathematisches Institut der LMU München Theresienstraße 39 D–80333 München (Germany)
- [3] Mathematisches Seminar der Universität Kiel Ludewig-Meyn Straße 4 D–24098 Kiel (Germany)
- [4] Mathematisches Institut der Universität Münster Einsteinstraße 62 D–48149 Münster (Germany)
Séminaire de théorie spectrale et géométrie (2012-2014)
- Volume: 31, page 91-116
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topMazzeo, Rafe, et al. "Limiting configurations for solutions of Hitchin’s equation." Séminaire de théorie spectrale et géométrie 31 (2012-2014): 91-116. <http://eudml.org/doc/275685>.
@article{Mazzeo2012-2014,
abstract = {We review recent work on the compactification of the moduli space of Hitchin’s self-duality equation. We study the degeneration behavior near the ends of this moduli space in a set of generic directions by showing how limiting configurations can be desingularized. Following ideas of Hitchin, we can relate the top boundary stratum of this space of limiting configurations to a Prym variety. A key role is played by the family of rotationally symmetric solutions to the self-duality equation on $\mathbb\{C\}$, which we discuss in detail here.},
affiliation = {Department of Mathematics Stanford University Stanford, CA 94305 (USA); Mathematisches Institut der LMU München Theresienstraße 39 D–80333 München (Germany); Mathematisches Seminar der Universität Kiel Ludewig-Meyn Straße 4 D–24098 Kiel (Germany); Mathematisches Institut der Universität Münster Einsteinstraße 62 D–48149 Münster (Germany)},
author = {Mazzeo, Rafe, Swoboda, Jan, Weiß, Hartmut, Witt, Frederik},
journal = {Séminaire de théorie spectrale et géométrie},
language = {eng},
pages = {91-116},
publisher = {Institut Fourier},
title = {Limiting configurations for solutions of Hitchin’s equation},
url = {http://eudml.org/doc/275685},
volume = {31},
year = {2012-2014},
}
TY - JOUR
AU - Mazzeo, Rafe
AU - Swoboda, Jan
AU - Weiß, Hartmut
AU - Witt, Frederik
TI - Limiting configurations for solutions of Hitchin’s equation
JO - Séminaire de théorie spectrale et géométrie
PY - 2012-2014
PB - Institut Fourier
VL - 31
SP - 91
EP - 116
AB - We review recent work on the compactification of the moduli space of Hitchin’s self-duality equation. We study the degeneration behavior near the ends of this moduli space in a set of generic directions by showing how limiting configurations can be desingularized. Following ideas of Hitchin, we can relate the top boundary stratum of this space of limiting configurations to a Prym variety. A key role is played by the family of rotationally symmetric solutions to the self-duality equation on $\mathbb{C}$, which we discuss in detail here.
LA - eng
UR - http://eudml.org/doc/275685
ER -
References
top- M. F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615 Zbl0509.14014MR702806
- Arnaud Beauville, M. S. Narasimhan, S. Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989), 169-179 Zbl0666.14015MR998478
- Riccardo Benedetti, Carlo Petronio, Lectures on hyperbolic geometry, (1992), Springer-Verlag, Berlin Zbl0768.51018MR1219310
- Roger Bielawski, Asymptotic behaviour of monopole metrics, J. Reine Angew. Math. 468 (1995), 139-165 Zbl0832.53035MR1361789
- Roger Bielawski, Monopoles and the Gibbons-Manton metric, Comm. Math. Phys. 194 (1998), 297-321 Zbl0956.53022MR1627653
- Roger Bielawski, Monopoles and clusters, Comm. Math. Phys. 284 (2008), 675-712 Zbl1166.53031MR2452592
- Hans U. Boden, Representations of orbifold groups and parabolic bundles, Comment. Math. Helv. 66 (1991), 389-447 Zbl0758.57013MR1120654
- Hans U. Boden, Kôji Yokogawa, Moduli spaces of parabolic Higgs bundles and parabolic pairs over smooth curves. I, Internat. J. Math. 7 (1996), 573-598 Zbl0883.14012MR1411302
- Kevin Corlette, Flat -bundles with canonical metrics, J. Differential Geom. 28 (1988), 361-382 Zbl0676.58007MR965220
- S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom. 18 (1983), 269-277 Zbl0504.49027MR710055
- S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3) 55 (1987), 127-131 Zbl0634.53046MR887285
- Birte Feix, Hyperkähler metrics on cotangent bundles, J. Reine Angew. Math. 532 (2001), 33-46 Zbl0976.53049MR1817502
- Laura Fredrickson, (in preparation)
- Daniel S. Freed, Special Kähler manifolds, Comm. Math. Phys. 203 (1999), 31-52 Zbl0940.53040MR1695113
- Mikio Furuta, Brian Steer, Seifert fibred homology -spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math. 96 (1992), 38-102 Zbl0769.58009MR1185787
- Davide Gaiotto, Gregory W. Moore, Andrew Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Comm. Math. Phys. 299 (2010), 163-224 Zbl1225.81135MR2672801
- Davide Gaiotto, Gregory W. Moore, Andrew Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013), 239-403 Zbl06135753MR3003931
- R. C. Gunning, Lectures on vector bundles over Riemann surfaces, (1967), University of Tokyo Press, Tokyo; Princeton University Press, Princeton, N.J. Zbl0163.31903MR230326
- Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York-Heidelberg Zbl0531.14001MR463157
- Tamás Hausel, Vanishing of intersection numbers on the moduli space of Higgs bundles, Adv. Theor. Math. Phys. 2 (1998), 1011-1040 Zbl1036.81510MR1688480
- Tamás Hausel, Eugenie Hunsicker, Rafe Mazzeo, Hodge cohomology of gravitational instantons, Duke Math. J. 122 (2004), 485-548 Zbl1062.58002MR2057017
- N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), 59-126 Zbl0634.53045MR887284
- N. J. Hitchin, A. Karlhede, U. Lindström, M. Roček, Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589 Zbl0612.53043MR877637
- N. J. Hitchin, G. B. Segal, R. S. Ward, Integrable systems, 4 (1999), The Clarendon Press, Oxford University Press, New York Zbl1082.37501MR1723384
- Nigel Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91-114 Zbl0627.14024MR885778
- Nigel Hitchin, -cohomology of hyperkähler quotients, Comm. Math. Phys. 211 (2000), 153-165 Zbl0955.58019MR1757010
- Nigel Hitchin, Limiting configurations, private communication (2014) MR3223571
- Arthur Jaffe, Clifford Taubes, Vortices and monopoles, 2 (1980), Birkhäuser, Boston, Mass. Zbl0457.53034MR614447
- Shoshichi Kobayashi, Differential geometry of complex vector bundles, 15 (1987), Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo Zbl0708.53002MR909698
- L. J. Mason, N. M. J. Woodhouse, Self-duality and the Painlevé transcendents, Nonlinearity 6 (1993), 569-581 Zbl0778.34004MR1231774
- R Mazzeo, J Swoboda, H Weiß, F Witt, Ends of the moduli space of Higgs bundles, (2014)
- V. B. Mehta, C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), 205-239 Zbl0454.14006MR575939
- David Mumford, Geometric invariant theory, (1965), Springer-Verlag, Berlin-New York Zbl0147.39304MR214602
- David Mumford, Prym varieties. I, Contributions to analysis (a collection of papers dedicated to Lipman Bers) (1974), 325-350, Academic Press, New York Zbl0299.14018MR379510
- M. S. Narasimhan, C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540-567 Zbl0171.04803MR184252
- Ben Nasatyr, Brian Steer, Orbifold Riemann surfaces and the Yang-Mills-Higgs equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 595-643 Zbl0867.58009MR1375314
- P. E. Newstead, Introduction to moduli problems and orbit spaces, 51 (1978), Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi Zbl1277.14001MR546290
- Nitin Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3) 62 (1991), 275-300 Zbl0733.14005MR1085642
- Ashoke Sen, Dyon-monopole bound states, self-dual harmonic forms on the multi-monopole moduli space, and invariance in string theory, Phys. Lett. B 329 (1994), 217-221 Zbl1190.81113MR1281578
- C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Bull. Amer. Math. Soc. 83 (1977), 124-126 Zbl0354.14005MR570987
- Carlos T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), 867-918 Zbl0669.58008MR944577
- Carlos T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713-770 Zbl0713.58012MR1040197
- C. H. Taubes, Compactness theorems for generalizations of the -dimensional anti-self dual equations, Part I, (2013)
- C. H. Taubes, Compactness theorems for generalizations of the -dimensional anti-self dual equations, Part II, (2013)
- Misha Verbitsky, Dmitri Kaledin, Hyperkahler manifolds, 12 (1999), International Press, Somerville, MA Zbl0990.53048MR1815021
- Raymond O. Wells, Differential analysis on complex manifolds, 65 (2008), Springer, New York Zbl1131.32001MR2359489
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.