Limiting configurations for solutions of Hitchin’s equation

Rafe Mazzeo[1]; Jan Swoboda[2]; Hartmut Weiß[3]; Frederik Witt[4]

  • [1] Department of Mathematics Stanford University Stanford, CA 94305 (USA)
  • [2] Mathematisches Institut der LMU München Theresienstraße 39 D–80333 München (Germany)
  • [3] Mathematisches Seminar der Universität Kiel Ludewig-Meyn Straße 4 D–24098 Kiel (Germany)
  • [4] Mathematisches Institut der Universität Münster Einsteinstraße 62 D–48149 Münster (Germany)

Séminaire de théorie spectrale et géométrie (2012-2014)

  • Volume: 31, page 91-116
  • ISSN: 1624-5458

Abstract

top
We review recent work on the compactification of the moduli space of Hitchin’s self-duality equation. We study the degeneration behavior near the ends of this moduli space in a set of generic directions by showing how limiting configurations can be desingularized. Following ideas of Hitchin, we can relate the top boundary stratum of this space of limiting configurations to a Prym variety. A key role is played by the family of rotationally symmetric solutions to the self-duality equation on , which we discuss in detail here.

How to cite

top

Mazzeo, Rafe, et al. "Limiting configurations for solutions of Hitchin’s equation." Séminaire de théorie spectrale et géométrie 31 (2012-2014): 91-116. <http://eudml.org/doc/275685>.

@article{Mazzeo2012-2014,
abstract = {We review recent work on the compactification of the moduli space of Hitchin’s self-duality equation. We study the degeneration behavior near the ends of this moduli space in a set of generic directions by showing how limiting configurations can be desingularized. Following ideas of Hitchin, we can relate the top boundary stratum of this space of limiting configurations to a Prym variety. A key role is played by the family of rotationally symmetric solutions to the self-duality equation on $\mathbb\{C\}$, which we discuss in detail here.},
affiliation = {Department of Mathematics Stanford University Stanford, CA 94305 (USA); Mathematisches Institut der LMU München Theresienstraße 39 D–80333 München (Germany); Mathematisches Seminar der Universität Kiel Ludewig-Meyn Straße 4 D–24098 Kiel (Germany); Mathematisches Institut der Universität Münster Einsteinstraße 62 D–48149 Münster (Germany)},
author = {Mazzeo, Rafe, Swoboda, Jan, Weiß, Hartmut, Witt, Frederik},
journal = {Séminaire de théorie spectrale et géométrie},
language = {eng},
pages = {91-116},
publisher = {Institut Fourier},
title = {Limiting configurations for solutions of Hitchin’s equation},
url = {http://eudml.org/doc/275685},
volume = {31},
year = {2012-2014},
}

TY - JOUR
AU - Mazzeo, Rafe
AU - Swoboda, Jan
AU - Weiß, Hartmut
AU - Witt, Frederik
TI - Limiting configurations for solutions of Hitchin’s equation
JO - Séminaire de théorie spectrale et géométrie
PY - 2012-2014
PB - Institut Fourier
VL - 31
SP - 91
EP - 116
AB - We review recent work on the compactification of the moduli space of Hitchin’s self-duality equation. We study the degeneration behavior near the ends of this moduli space in a set of generic directions by showing how limiting configurations can be desingularized. Following ideas of Hitchin, we can relate the top boundary stratum of this space of limiting configurations to a Prym variety. A key role is played by the family of rotationally symmetric solutions to the self-duality equation on $\mathbb{C}$, which we discuss in detail here.
LA - eng
UR - http://eudml.org/doc/275685
ER -

References

top
  1. M. F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615 Zbl0509.14014MR702806
  2. Arnaud Beauville, M. S. Narasimhan, S. Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989), 169-179 Zbl0666.14015MR998478
  3. Riccardo Benedetti, Carlo Petronio, Lectures on hyperbolic geometry, (1992), Springer-Verlag, Berlin Zbl0768.51018MR1219310
  4. Roger Bielawski, Asymptotic behaviour of S U ( 2 ) monopole metrics, J. Reine Angew. Math. 468 (1995), 139-165 Zbl0832.53035MR1361789
  5. Roger Bielawski, Monopoles and the Gibbons-Manton metric, Comm. Math. Phys. 194 (1998), 297-321 Zbl0956.53022MR1627653
  6. Roger Bielawski, Monopoles and clusters, Comm. Math. Phys. 284 (2008), 675-712 Zbl1166.53031MR2452592
  7. Hans U. Boden, Representations of orbifold groups and parabolic bundles, Comment. Math. Helv. 66 (1991), 389-447 Zbl0758.57013MR1120654
  8. Hans U. Boden, Kôji Yokogawa, Moduli spaces of parabolic Higgs bundles and parabolic K ( D ) pairs over smooth curves. I, Internat. J. Math. 7 (1996), 573-598 Zbl0883.14012MR1411302
  9. Kevin Corlette, Flat G -bundles with canonical metrics, J. Differential Geom. 28 (1988), 361-382 Zbl0676.58007MR965220
  10. S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom. 18 (1983), 269-277 Zbl0504.49027MR710055
  11. S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3) 55 (1987), 127-131 Zbl0634.53046MR887285
  12. Birte Feix, Hyperkähler metrics on cotangent bundles, J. Reine Angew. Math. 532 (2001), 33-46 Zbl0976.53049MR1817502
  13. Laura Fredrickson, (in preparation) 
  14. Daniel S. Freed, Special Kähler manifolds, Comm. Math. Phys. 203 (1999), 31-52 Zbl0940.53040MR1695113
  15. Mikio Furuta, Brian Steer, Seifert fibred homology 3 -spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math. 96 (1992), 38-102 Zbl0769.58009MR1185787
  16. Davide Gaiotto, Gregory W. Moore, Andrew Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Comm. Math. Phys. 299 (2010), 163-224 Zbl1225.81135MR2672801
  17. Davide Gaiotto, Gregory W. Moore, Andrew Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013), 239-403 Zbl06135753MR3003931
  18. R. C. Gunning, Lectures on vector bundles over Riemann surfaces, (1967), University of Tokyo Press, Tokyo; Princeton University Press, Princeton, N.J. Zbl0163.31903MR230326
  19. Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York-Heidelberg Zbl0531.14001MR463157
  20. Tamás Hausel, Vanishing of intersection numbers on the moduli space of Higgs bundles, Adv. Theor. Math. Phys. 2 (1998), 1011-1040 Zbl1036.81510MR1688480
  21. Tamás Hausel, Eugenie Hunsicker, Rafe Mazzeo, Hodge cohomology of gravitational instantons, Duke Math. J. 122 (2004), 485-548 Zbl1062.58002MR2057017
  22. N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), 59-126 Zbl0634.53045MR887284
  23. N. J. Hitchin, A. Karlhede, U. Lindström, M. Roček, Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589 Zbl0612.53043MR877637
  24. N. J. Hitchin, G. B. Segal, R. S. Ward, Integrable systems, 4 (1999), The Clarendon Press, Oxford University Press, New York Zbl1082.37501MR1723384
  25. Nigel Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91-114 Zbl0627.14024MR885778
  26. Nigel Hitchin, L 2 -cohomology of hyperkähler quotients, Comm. Math. Phys. 211 (2000), 153-165 Zbl0955.58019MR1757010
  27. Nigel Hitchin, Limiting configurations, private communication (2014) MR3223571
  28. Arthur Jaffe, Clifford Taubes, Vortices and monopoles, 2 (1980), Birkhäuser, Boston, Mass. Zbl0457.53034MR614447
  29. Shoshichi Kobayashi, Differential geometry of complex vector bundles, 15 (1987), Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo Zbl0708.53002MR909698
  30. L. J. Mason, N. M. J. Woodhouse, Self-duality and the Painlevé transcendents, Nonlinearity 6 (1993), 569-581 Zbl0778.34004MR1231774
  31. R Mazzeo, J Swoboda, H Weiß, F Witt, Ends of the moduli space of Higgs bundles, (2014) 
  32. V. B. Mehta, C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), 205-239 Zbl0454.14006MR575939
  33. David Mumford, Geometric invariant theory, (1965), Springer-Verlag, Berlin-New York Zbl0147.39304MR214602
  34. David Mumford, Prym varieties. I, Contributions to analysis (a collection of papers dedicated to Lipman Bers) (1974), 325-350, Academic Press, New York Zbl0299.14018MR379510
  35. M. S. Narasimhan, C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540-567 Zbl0171.04803MR184252
  36. Ben Nasatyr, Brian Steer, Orbifold Riemann surfaces and the Yang-Mills-Higgs equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 595-643 Zbl0867.58009MR1375314
  37. P. E. Newstead, Introduction to moduli problems and orbit spaces, 51 (1978), Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi Zbl1277.14001MR546290
  38. Nitin Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3) 62 (1991), 275-300 Zbl0733.14005MR1085642
  39. Ashoke Sen, Dyon-monopole bound states, self-dual harmonic forms on the multi-monopole moduli space, and S L ( 2 , Z ) invariance in string theory, Phys. Lett. B 329 (1994), 217-221 Zbl1190.81113MR1281578
  40. C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Bull. Amer. Math. Soc. 83 (1977), 124-126 Zbl0354.14005MR570987
  41. Carlos T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), 867-918 Zbl0669.58008MR944577
  42. Carlos T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713-770 Zbl0713.58012MR1040197
  43. C. H. Taubes, Compactness theorems for SL ( 2 ; ) generalizations of the 4 -dimensional anti-self dual equations, Part I, (2013) 
  44. C. H. Taubes, Compactness theorems for SL ( 2 ; ) generalizations of the 4 -dimensional anti-self dual equations, Part II, (2013) 
  45. Misha Verbitsky, Dmitri Kaledin, Hyperkahler manifolds, 12 (1999), International Press, Somerville, MA Zbl0990.53048MR1815021
  46. Raymond O. Wells, Differential analysis on complex manifolds, 65 (2008), Springer, New York Zbl1131.32001MR2359489

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.