Imbedding vector fields in scalar parabolic Dirichlet B V P s

Peter Poláčik; Krzysztof Rybakowski

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 4, page 737-749
  • ISSN: 0391-173X

How to cite

top

Poláčik, Peter, and Rybakowski, Krzysztof. "Imbedding vector fields in scalar parabolic Dirichlet $BVP_s$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.4 (1995): 737-749. <http://eudml.org/doc/84220>.

@article{Poláčik1995,
author = {Poláčik, Peter, Rybakowski, Krzysztof},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {center manifold},
language = {eng},
number = {4},
pages = {737-749},
publisher = {Scuola normale superiore},
title = {Imbedding vector fields in scalar parabolic Dirichlet $BVP_s$},
url = {http://eudml.org/doc/84220},
volume = {22},
year = {1995},
}

TY - JOUR
AU - Poláčik, Peter
AU - Rybakowski, Krzysztof
TI - Imbedding vector fields in scalar parabolic Dirichlet $BVP_s$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 4
SP - 737
EP - 749
LA - eng
KW - center manifold
UR - http://eudml.org/doc/84220
ER -

References

top
  1. [BJS] L. Bers - F. John - M. Schechter, Partial differential equations, Interscience Publishers, New York, 1964. Zbl0126.00207MR163043
  2. [Da] E.N. Dancer, On the existence of two-dimensional invariant tori for scalar parabolic equations with time periodic coefficients, Annali Scuola Norm. Sup. Pisa18 (1991), 456-471. Zbl0779.35049MR1145318
  3. [Fi-P] B. Fiedler - P. POLÁčIK, Complicated dynamics of scalar reaction-diffusion equations with a nonlocal term, Proc. Royal Soc. Edinburgh Sect. A, 115 (1990), 167-192. Zbl0726.35060MR1059652
  4. [Ha1] J.K. Hale, Flows on centre manifolds for scalar functional differential equations, Proc. Royal Soc. Edinburgh Sect. A, 101 (1985), 193-201. Zbl0582.34058MR824220
  5. [Ha2] J.K. Hale, Local flows for functional differential equations, Contemp. Math., 56 (1986), 185-192. Zbl0612.34066MR855090
  6. [Ha3] J.K. Hale, Asymptotic behavior of dissipative systems, AMS Publications, Providence RI, 1988. Zbl0642.58013MR941371
  7. [Ha-R] J.K. Hale - G. Raugel, Convergence in gradient-like systems with applications to PDE, J. Applied Math. Physics (ZAMP), 43 (1992), 63-124. Zbl0751.58033MR1149371
  8. [He] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Vol. 840, Springer, New York, 1981. Zbl0456.35001MR610244
  9. [Fa-M] T. Faria - L. Magalhães, Realization of ordinary differential equations by retarded functional differential equations in neighborhoods of equilibrium points, preprint. Zbl0835.34086MR1357382
  10. [Po1] P. Polá, Complicated dynamics in scalar semilinear parabolic equations in higher space dimension, J. Differential Equations89 (1991), 244-271. Zbl0738.35027MR1091478
  11. [Po2] P. Polá, Imbedding of any vector field in a scalar semilinear parabolic equation, Proc. Amer. Math Soc.115 (1992), 1001-1008. Zbl0755.35046MR1089411
  12. [Po3] P. Polá, High-dimensional w-limit sets and chaos in scalar parabolic equations, J. Differential Equations, 119 (1995), 24-53. Zbl0830.35060MR1334487
  13. [Po4] P. Polá, Transversal and nontransversal intersections of stable and unstable manifolds in reaction diffusion equations on symmetric domains, Differential Integral Equations, 7 (1994), 1527-1545. Zbl0809.35041MR1269669
  14. [Ry1] K.P. Rybakowski, Realization of arbitrary vector fields on center manifolds of parabolic Dirichlet BVPs, J. Differential Equations, 114 (1994), 199-221. Zbl0807.35072MR1302140
  15. [Ry2] K.P. Rybakowski, Realization of arbitrary vector fields on invariant manifolds of delay equations, J. Differential Equations, 114 (1994), 222-231. Zbl0815.34064MR1302141
  16. [Ry3] K.P. Rybakowski, An abstract approach to smoothness of invariant manifolds, Appl. Anal.49 (1993), 119-150. Zbl0736.35016MR1279237
  17. [Sa-F] B. Sandstede - B. Fiedler, Dynamics of periodically forced parabolic equations on the circle, to appear. Zbl0754.35066MR1182662
  18. [Ze] T.I. Zelenyak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable. Differential Equations4 (1988), 17-22. Zbl0232.35053MR223758

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.