On the existence of two-dimensional invariant tori for scalar parabolic equations with time periodic coefficients

E. N. Dancer

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)

  • Volume: 18, Issue: 3, page 455-471
  • ISSN: 0391-173X

How to cite

top

Dancer, E. N.. "On the existence of two-dimensional invariant tori for scalar parabolic equations with time periodic coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.3 (1991): 455-471. <http://eudml.org/doc/84108>.

@article{Dancer1991,
author = {Dancer, E. N.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {scalar parabolic equations with time periodic coefficients; periodic solution},
language = {eng},
number = {3},
pages = {455-471},
publisher = {Scuola normale superiore},
title = {On the existence of two-dimensional invariant tori for scalar parabolic equations with time periodic coefficients},
url = {http://eudml.org/doc/84108},
volume = {18},
year = {1991},
}

TY - JOUR
AU - Dancer, E. N.
TI - On the existence of two-dimensional invariant tori for scalar parabolic equations with time periodic coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 3
SP - 455
EP - 471
LA - eng
KW - scalar parabolic equations with time periodic coefficients; periodic solution
UR - http://eudml.org/doc/84108
ER -

References

top
  1. [1] S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math.396 (1988), 79-96. Zbl0644.35050MR953678
  2. [2] P. Brunovsky - P. Pola B. Sanstede, Convergence in general parabolic equations in one space dimension, preprint. 
  3. [3] X. Chen - H. Matano, Convergence, asymptotic periodicity and finite time blow-up in one space dimension semilinear heat equations, J. Differential Equations78 (1989), 159-172. Zbl0692.35013
  4. [4] P. Chossat - M. Golubitsky, Hopf bifurcation in the presence of symmetry, centre manifolds and Liapounov-Schmidt reduction, p. 344-352 in "Oscillation, bifurcation and chaos", Amer Math Soc., Providence, 1987. Zbl0631.58021MR909923
  5. [5] E.N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations II, J. Differential Equations, 87 (1990), 316-339. Zbl0729.35050MR1072904
  6. [6] M. Golubitsky - I. Stewart - D. Schaeffer, Singularities and groups in bifurcation theory II, Springer, Berlin, 1988. Zbl0691.58003MR950168
  7. [7] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics840, Springer, Berlin, 1981. Zbl0456.35001MR610244
  8. [8] P. Hess, On positive solutions of semilinear periodic parabolic problems, in Infinite-dimensional systems, Lecture Notes in Mathematics1076, Springer, Berlin, 1984. Zbl0556.35066MR843583
  9. [9] M. Hirsch - C. Pugh - M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer, Berlin, 1977. Zbl0355.58009MR501173
  10. [10] G. looss, Bifurcation of maps and application, North Holland, Amsterdam, 1979. 
  11. [11] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1966. Zbl0148.12601
  12. [12] O. Ladyzhenskaya - V. Solonnikov - N. Uralceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Providence, 1981. Zbl0174.15403
  13. [13] I. Mardesic - J. Segal, Shape theory, North Holland, Amsterdam, 1982. Zbl0495.55001MR676973
  14. [14] P. Pola, Complicated dynamics in scalar semilinear parabolic equations in higher space dimension, to appear. MR1091478
  15. [15] D. Ruelle - F. Takens, On the nature of turbulence, Comm. Math. Phys.20 (1972), 167-192. Zbl0223.76041MR284067
  16. [16] S. Stenberg, Celestial mechanics - Part II, Benjamin, New York, 1969. Zbl0194.56702
  17. [17] A. Vanderbauwhede, Invariant manifolds in infinite dimensions, 409-420 in "Dynamics of infinite dimensional systems", Springer, Berlin, 1987. MR921925

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.