On the existence of two-dimensional invariant tori for scalar parabolic equations with time periodic coefficients
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)
- Volume: 18, Issue: 3, page 455-471
- ISSN: 0391-173X
Access Full Article
topHow to cite
topDancer, E. N.. "On the existence of two-dimensional invariant tori for scalar parabolic equations with time periodic coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.3 (1991): 455-471. <http://eudml.org/doc/84108>.
@article{Dancer1991,
author = {Dancer, E. N.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {scalar parabolic equations with time periodic coefficients; periodic solution},
language = {eng},
number = {3},
pages = {455-471},
publisher = {Scuola normale superiore},
title = {On the existence of two-dimensional invariant tori for scalar parabolic equations with time periodic coefficients},
url = {http://eudml.org/doc/84108},
volume = {18},
year = {1991},
}
TY - JOUR
AU - Dancer, E. N.
TI - On the existence of two-dimensional invariant tori for scalar parabolic equations with time periodic coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 3
SP - 455
EP - 471
LA - eng
KW - scalar parabolic equations with time periodic coefficients; periodic solution
UR - http://eudml.org/doc/84108
ER -
References
top- [1] S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math.396 (1988), 79-96. Zbl0644.35050MR953678
- [2] P. Brunovsky - P. Pola B. Sanstede, Convergence in general parabolic equations in one space dimension, preprint.
- [3] X. Chen - H. Matano, Convergence, asymptotic periodicity and finite time blow-up in one space dimension semilinear heat equations, J. Differential Equations78 (1989), 159-172. Zbl0692.35013
- [4] P. Chossat - M. Golubitsky, Hopf bifurcation in the presence of symmetry, centre manifolds and Liapounov-Schmidt reduction, p. 344-352 in "Oscillation, bifurcation and chaos", Amer Math Soc., Providence, 1987. Zbl0631.58021MR909923
- [5] E.N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations II, J. Differential Equations, 87 (1990), 316-339. Zbl0729.35050MR1072904
- [6] M. Golubitsky - I. Stewart - D. Schaeffer, Singularities and groups in bifurcation theory II, Springer, Berlin, 1988. Zbl0691.58003MR950168
- [7] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics840, Springer, Berlin, 1981. Zbl0456.35001MR610244
- [8] P. Hess, On positive solutions of semilinear periodic parabolic problems, in Infinite-dimensional systems, Lecture Notes in Mathematics1076, Springer, Berlin, 1984. Zbl0556.35066MR843583
- [9] M. Hirsch - C. Pugh - M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer, Berlin, 1977. Zbl0355.58009MR501173
- [10] G. looss, Bifurcation of maps and application, North Holland, Amsterdam, 1979.
- [11] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1966. Zbl0148.12601
- [12] O. Ladyzhenskaya - V. Solonnikov - N. Uralceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Providence, 1981. Zbl0174.15403
- [13] I. Mardesic - J. Segal, Shape theory, North Holland, Amsterdam, 1982. Zbl0495.55001MR676973
- [14] P. Pola, Complicated dynamics in scalar semilinear parabolic equations in higher space dimension, to appear. MR1091478
- [15] D. Ruelle - F. Takens, On the nature of turbulence, Comm. Math. Phys.20 (1972), 167-192. Zbl0223.76041MR284067
- [16] S. Stenberg, Celestial mechanics - Part II, Benjamin, New York, 1969. Zbl0194.56702
- [17] A. Vanderbauwhede, Invariant manifolds in infinite dimensions, 409-420 in "Dynamics of infinite dimensional systems", Springer, Berlin, 1987. MR921925
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.