Plane curves with hyperbolic and C -hyperbolic complements

G. Dethloff; M. Zaidenberg

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1996)

  • Volume: 23, Issue: 4, page 749-778
  • ISSN: 0391-173X

How to cite

top

Dethloff, G., and Zaidenberg, M.. "Plane curves with hyperbolic and $C$-hyperbolic complements." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.4 (1996): 749-778. <http://eudml.org/doc/84248>.

@article{Dethloff1996,
author = {Dethloff, G., Zaidenberg, M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {plane curves; -hyperbolic; complex space},
language = {eng},
number = {4},
pages = {749-778},
publisher = {Scuola normale superiore},
title = {Plane curves with hyperbolic and $C$-hyperbolic complements},
url = {http://eudml.org/doc/84248},
volume = {23},
year = {1996},
}

TY - JOUR
AU - Dethloff, G.
AU - Zaidenberg, M.
TI - Plane curves with hyperbolic and $C$-hyperbolic complements
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
PB - Scuola normale superiore
VL - 23
IS - 4
SP - 749
EP - 778
LA - eng
KW - plane curves; -hyperbolic; complex space
UR - http://eudml.org/doc/84248
ER -

References

top
  1. [1] P. Aluffi - C. Faber, Linear orbits of d-tuples of points in P1, J. Reine Angew. Math. 445 (1993), 205-220. Zbl0781.14036MR1244973
  2. [2] A.B. Aure, Plücker conditions on plane rational curves, Math. Scand55 (1984), 47-58, with Appendix by S.A. Strömme, ibid. 59-61. Zbl0578.14029MR769024
  3. [3] K. Azukawa - M. Suzuki, Some examples of algebraic degeneracy and hyperbolic manifolds, Rocky Mountain J. Math10 (1980), 655-659. Zbl0416.32012MR590228
  4. [4] J.A. Carlson - M. Green, Holomorphic curves in the plane, Duke Math. J.43 (1976), 1-9. Zbl0333.32022MR397026
  5. [5] A.I. Degtyarev, Topology of plane projective algebraic curves, PhD Thesis, Leningrad State University, 1987 (in Russian). 
  6. [6] A. Degtyarev, Quintics in CP2 with nonabelianfundamental group, preprint, Max-Planck-Institut für Mathematik, Bonn, 1995, 21p. 
  7. [7] P. Deligne, Le groupe fondamental du complement d'une courbe plane n'ayant que des points doubles ordinaries est abélien, Sem. Bourbaki, 1979/1980, Lecture Notes in Math. 842, Springer-Verlag, N.Y., 1981, 1-25. Zbl0478.14008MR636513
  8. [8] G. Dethloff - G. Schumacher - P.-M. Wong, Hyperbolicity of the complements of plane algebraic curves, Amer. J. Math.117 (1995), 573-599. Zbl0842.32021MR1333937
  9. [9] G. Dethloff - G. Schumacher - P.-M. Wong, On the hyperbolicity of the complement of curves in algebraic surfaces: The three component case, Duke Math. J.78 (1995), 193-212. Zbl0847.32028MR1328756
  10. [10] G. Dethloff - M. Zaidenberg, Examples of plane curves of low degrees with hyperbolic and C-hyperbolic complements, Proc. Conf. "Geometric Complex Analysis", Hayama, March 19-29, 1995, J. Noguchi a.e. eds., World ScientificSingapore e.a., 1996, 147-161. Zbl0943.32016MR1453597
  11. [11] I. Dolgachev - A. Libgober, On the fundamental group of the complement to a discriminant variety, in: Algebraic Geometry, Lecture Notes in Math. 862SpringerN.Y. 1981, 1-25. Zbl0475.14011MR644816
  12. [12] H. Flenner - M. Zaidenberg, On a class of rational cuspidal plane curves, Manuscripta Math.89 (1996), 439-459. Zbl0868.14014MR1383524
  13. [13] W. Fulton, On the fundamental group of the complement to a node curve, Ann. of Math.11 (1980), 407-409. Zbl0406.14008MR569076
  14. [14] I.M. Gelfand - M.M. Kapranov - A.V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Bikhäuser, Boston, 1994. Zbl0827.14036MR1264417
  15. [15] H. Grauert - U. Peternell, Hyperbolicity of the complements of plane curves, Manuscripta Math.50 (1985), 429-441. Zbl0581.32031MR784151
  16. [16] M. Green, The complement of the dual of a plane curve and some new hyperbolic manifolds, in: Value Distribution Theory, Kujala and Vitter eds., Marcel Dekker, N.Y., 1974, 119-131. Zbl0289.32015MR352541
  17. [17] M. Green, Some examples and counterexamples in value distribution theory, Compositio Math.30 (1975), 317-322. Zbl0307.32022MR374498
  18. [18] D. Hilbert, Theory of Algebraic Invariants, Cambridge University Press, Cambridge, 1993. Zbl0801.13001MR1266168
  19. [19] Sh.I. Kaliman, The holomorphic universal covers of space of polynomials without multiple roots, Selecta Mathem. form. Sovietica12 (1993), 395-405. Zbl0789.32012MR1254030
  20. [20] J. Kaneko, On the fundamental group of the complement to a maximal cuspidal plane curve, Mem. Fac. Sci. Kyushu Univ. Ser. A.39 (1985), 133-146. Zbl0604.14007MR783228
  21. [21] SH. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, N.Y., 1970. Zbl0207.37902MR277770
  22. [22] V.Ja. LIN , Liouville coverings of complex spaces, and amenable groups, Math.USSR-Sb.60 (1988), 197-216. Zbl0655.32025MR882834
  23. [23] K. Masuda - J. Noguchi, A construction of hyperbolic hypersurfaces of Pn (C), Math. Ann.304 (1996), 339-362. Zbl0844.32018MR1371771
  24. [24] A. Nadel, Hyperbolic surface in P3, Duke Math. J.58 (1989), 749-771. Zbl0686.32015MR1016444
  25. [25] M. Namba, Geometry of projective algebraic curves, Marcell Dekker, N.Y., 1984. Zbl0556.14012MR768929
  26. [26] M. Oka, Symmetric plane curves with nodes and cusps, J. Math. Soc. Japan44 (1992), 375-414. Zbl0767.14011MR1167373
  27. [27] A.Yu. Ol'shanskiy - A.L. Shmel'kin, Infinite groups, in: Algebra IV, Encyclopaeadia of Math. Sci. 37Springer Berlin, 1993, 3-95. 
  28. [28] R. Piene, Cuspidal projections of space curves, Math. Ann.256 (1981), 95-119. Zbl0468.14010MR620126
  29. [29] V. Popov - E. Vinberg, Invariant theory, in: Algebraic Geometry IV, Parshin and Shafarevich, eds., 123-278, Springer Berlin, 1994. Zbl0789.14008MR1309681
  30. [30] H. Royden, Automorphisms and isometries of Teichmüller space, in: Advantances in the Theory of Riemann Surface, 1969 Stony Brook Conf. Ann. of Math. St. 66, Princeton Univ. Press, 1971, Princeton, N.J., 369-383. Zbl0218.32011MR288254
  31. [31] F. Severi, Vorlesungen über algebraische Geometrie, Leipzig: Teubner, 1921. JFM48.0687.01
  32. [32] Y.-T. Siu - S.-K. Yeung, Hyperbolicity of the complement of a generic smooth curve of high degree in the complex projective plane, Invent. Math.124 (1996), 573-618. Zbl0856.32017MR1369429
  33. [33] G. Veronese, Behandlung der projectivischen Verhältnisse der Räume von verschiedenen Dimensionen durch das Princip des Projicirens und Schneidens, Math. Ann.19 (1882), 193-234. Zbl13.0485.01JFM13.0485.01
  34. [34] R.J. Walker, Algebraic Curves, Princeton Math. Series 13Princeton University Press, Princeton, N.J., 1950. Zbl0039.37701MR33083
  35. [35] M. Zaidenberg, On hyperbolic embedding of complements of divisors and the limiting behavior of the Kobayashi-Royden metric, Math. USSR-Sb. 55 (1986), 55-70. Zbl0593.32016MR791317
  36. [36] M. Zaidenberg, Stability of hyperbolic imbeddedness and construction of examples, Math. USSR-Sb.63 (1989), 351-361. Zbl0668.32023MR937646
  37. [37] M. Zaidenberg, Hyperbolicity in projective spaces, Proc. Conf. on Hyperbolic and Diophantine Analysis, RIMS, Kyoto, Oct. 26-30, 1992, TIT, Tokyo, 1992, 136-156. MR1247074
  38. [38] O. Zariski, Collected Papers. Vol III: Topology of curves and surfaces, and special topics in the theory of algebraic varieties, The MIT Press, Cambridge Mass., 1978. Zbl0446.14001MR505104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.