Some examples and counter-examples in value distribution theory for several variables
Compositio Mathematica (1975)
- Volume: 30, Issue: 3, page 317-322
- ISSN: 0010-437X
Access Full Article
topHow to cite
topGreen, Mark L.. "Some examples and counter-examples in value distribution theory for several variables." Compositio Mathematica 30.3 (1975): 317-322. <http://eudml.org/doc/89261>.
@article{Green1975,
author = {Green, Mark L.},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {317-322},
publisher = {Noordhoff International Publishing},
title = {Some examples and counter-examples in value distribution theory for several variables},
url = {http://eudml.org/doc/89261},
volume = {30},
year = {1975},
}
TY - JOUR
AU - Green, Mark L.
TI - Some examples and counter-examples in value distribution theory for several variables
JO - Compositio Mathematica
PY - 1975
PB - Noordhoff International Publishing
VL - 30
IS - 3
SP - 317
EP - 322
LA - eng
UR - http://eudml.org/doc/89261
ER -
References
top- [1] L. Ahlfors: The theory of meromorphic curves. Acta Soc. Sci. Fenn. (N.S.) 3 (1941). Zbl0061.15206MR4309JFM67.0275.01
- [2] J. Carlson: A Picard theorem for P2 - D. Proc. of the A.M.S. Summer Inst. in Diff. Geom., Stanford, 1973.
- [3] J. Carlson and P. Griffiths: A defect relation for equidimensional holomorphic mappings between algebraic varieties. Ann. of Math.95, No. 3 (May 1972) 557-584. Zbl0248.32018MR311935
- [4] M. Green: Holomorphic maps into complex projective space omitting hyperplanes, Trans. A. M. S.169 (1972) 89-103. Zbl0256.32015MR308433
- [5] M. Green: Some Picard theorems for holomorphic maps to algebraic varieties. Am. J. Math.97 (1975) 43-75. Zbl0301.32022MR367302
- [6] M. Green: On the functional equation f2 = e2ϕ1 + e2ϕ2 + e2ϕ3 and a new Pi card theorem. Trans. A.M.S. 195 (1974) 223-230. Zbl0289.32016
- [7] M. Green: The complement of the dual of a plane curve and some new hyperbolic manifolds. p. 119-132, Value-Distribution Theory. Part A, Marcel Dekker (N. Y.1974). Zbl0289.32015MR352541
- [8] B. Shiffman: Nevanlinna defect relations for singular divisors. (to appear). Zbl0436.32022MR430325
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.