Shape existence in Navier-Stokes flow with heat convection

Raja Dziri; Jean-Paul Zolésio

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 1, page 165-192
  • ISSN: 0391-173X

How to cite

top

Dziri, Raja, and Zolésio, Jean-Paul. "Shape existence in Navier-Stokes flow with heat convection." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.1 (1997): 165-192. <http://eudml.org/doc/84252>.

@article{Dziri1997,
author = {Dziri, Raja, Zolésio, Jean-Paul},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Navier-Stokes flow; shape optimization; necessary optimality conditions},
language = {eng},
number = {1},
pages = {165-192},
publisher = {Scuola normale superiore},
title = {Shape existence in Navier-Stokes flow with heat convection},
url = {http://eudml.org/doc/84252},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Dziri, Raja
AU - Zolésio, Jean-Paul
TI - Shape existence in Navier-Stokes flow with heat convection
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 1
SP - 165
EP - 192
LA - eng
KW - Navier-Stokes flow; shape optimization; necessary optimality conditions
UR - http://eudml.org/doc/84252
ER -

References

top
  1. [1] L. Ambrosio - G. Buttazzo, An optimal design problem with perimeter penalization, Calc. Var. 1 (1993), 55-69. Zbl0794.49040MR1261717
  2. [2] C. Bernardi - C. Canuto - Y. Maday, Generalized inf-sup conditions for Chebyshev spectral approximation of the stokes problem, SIAM J. Numer. Anal.25, 1988. Zbl0666.76055MR972452
  3. [3] M.C. Delfour - J.P. Zolésio, Shape optimization, Comett Matari Programme, Mathematical Toolkit for Artificial Intelligence and Regulation of Macro-systems, INRIA-Sophia Antipolis, 1993. Zbl0925.93960
  4. [4] M.C. Delfour - J.P. Zolésio, A boundary differential equation for thin shells, J. Differential Equations119 (1995), 426-449. Zbl0827.73038MR1340546
  5. [5] A. Fasano, Somefree boundary problems with industrial applications, NATO ASI Series C, 380, Kluwer Academic Publishers, M. C. Delfour (ed.) (1992), 113-142. Zbl0765.76005MR1260974
  6. [6] M. Fortin, Problèmes de surfaces libres en mécanique des fluides, in " Shape optimization and free boundaries", M. C. Delfour, ed. Kluwer Academic Publishers, NATO ASI Series C, 380 Mur. (1992), 143-172. Zbl0779.76022MR1260975
  7. [7] V. Girault - P.A. Raviart, Finite element methods for Navier-Stokes equations theory and algorithms, SCM5, Springer-Verlag, Berlin, 1986. Zbl0585.65077MR851383
  8. [8] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhauser, Boston, Basel- Stuttgart, 1984. Zbl0545.49018MR775682
  9. [9] J. Sokolowski - J.P. Zolésio, Introduction to shape optimization, SCM16, Springer-Verlag, Berlin, 1992. Zbl0761.73003MR1215733
  10. [10] J. Stoker, Water waves, Interscience Publishers Inc., New York, 1965. 
  11. [11] J.P. Zolésio, Numerical algorithms and existence result fro Bernoulli-like steady free boundary problem, Large scale systems, theory and applications, North-Holland, Amsterdam, 1984. Zbl0552.49027MR780683
  12. [12] J.P. Zolésio, Weak shape formulation offree boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci.21 (1994), 11-44. Zbl0807.49018MR1276761

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.